/* Copyright 2009-2016 David Hadka * * This file is part of the MOEA Framework. * * The MOEA Framework is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * The MOEA Framework is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public * License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with the MOEA Framework. If not, see <http://www.gnu.org/licenses/>. */ package org.moeaframework.problem.misc; import org.moeaframework.core.Solution; import org.moeaframework.core.variable.EncodingUtils; import org.moeaframework.core.variable.RealVariable; import org.moeaframework.problem.AbstractProblem; /** * Tatsuya Okabe's OKA1 test problem. The probability density of points becomes * more sparse the closer a population gets to the Pareto front. * <p> * References: * <ol> * <li>Okabe, T., et al. "On Test Functions for Evolutionary Multi-Objective * Optimization." Parallel Problem Solving from Nature, pp. 792-802, 2004. * </ol> */ public class OKA1 extends AbstractProblem { /** * Constructs the OKA1 problem. */ public OKA1() { super(2, 2); } @Override public void evaluate(Solution solution) { double[] x = EncodingUtils.getReal(solution); double x1 = Math.cos(Math.PI / 12.0) * x[0] - Math.sin(Math.PI / 12.0) * x[1]; double x2 = Math.sin(Math.PI / 12.0) * x[0] + Math.cos(Math.PI / 12.0) * x[1]; solution.setObjective(0, x1); solution.setObjective(1, Math.sqrt(2.0 * Math.PI) - Math.sqrt(Math.abs(x1)) + 2.0 * Math.pow(Math.abs(x2 - 3.0 * Math.cos(x1) - 3), 1.0 / 3.0)); } @Override public Solution newSolution() { Solution solution = new Solution(2, 2); solution.setVariable(0, new RealVariable( 6.0 * Math.sin(Math.PI / 12.0), 6.0 * Math.sin(Math.PI / 12.0) + 2.0 * Math.PI * Math.cos(Math.PI / 12.0))); solution.setVariable(1, new RealVariable(-2.0 * Math.PI * Math.sin(Math.PI / 12), 6.0 * Math.cos(Math.PI / 12.0))); return solution; } }