/* Copyright 2009-2015 David Hadka
*
* This file is part of the MOEA Framework.
*
* The MOEA Framework is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* The MOEA Framework is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with the MOEA Framework. If not, see <http://www.gnu.org/licenses/>.
*/
package org.moeaframework.problem.misc;
import org.moeaframework.core.Solution;
import org.moeaframework.core.variable.EncodingUtils;
import org.moeaframework.core.variable.RealVariable;
import org.moeaframework.problem.AbstractProblem;
/**
* The Kursawe test problem. According to a personal correspondence between Van
* Veldhuizen and Marco Laumanns, a misprint exists in Kursawe's paper. This
* implementation uses the corrected version.
* <p>
* Properties:
* <ul>
* <li>Disconnected, symmetric Pareto set
* <li>Disconnected, concave Pareto front
* <li>Scalable number of variables
* </ul>
* <p>
* References:
* <ol>
* <li>Kursawe, F. "A Variant of Evolution Strategies for Vector Optimization."
* Parallel Problem Solving from Nature, pp. 193-197, 1991.
* <li>Van Veldhuizen, D. "Multiobjective Evolutionary Algorithms:
* Classifications, Analyses, and New Innovations." Ph.D. Dissertation. The Air
* Force Institute of Technology, Air University, 1999.
* </ol>
*/
public class Kursawe extends AbstractProblem {
/**
* The lower bound for decision variables.
*/
private final double lowerBound;
/**
* The upper bound for decision variables.
*/
private final double upperBound;
/**
* Constructs the Kursawe problem with {@code 3} decision variables.
*/
public Kursawe() {
this(3);
}
/**
* Constructs the Kursawe problem with the specified number of decision
* variables.
*
* @param numberOfVariables the number of decision variables
*/
public Kursawe(int numberOfVariables) {
this(numberOfVariables, -5.0, 5.0);
}
/**
* Constructs the Kursawe problem with the specified number of decision
* variables.
*
* @param numberOfVariables the number of decision variables
* @param lowerBound the lower bound for decision variables
* @param upperBound the upper bound for decision variables
*/
public Kursawe(int numberOfVariables, double lowerBound,
double upperBound) {
super(numberOfVariables, 2);
this.lowerBound = lowerBound;
this.upperBound = upperBound;
}
@Override
public void evaluate(Solution solution) {
double[] x = EncodingUtils.getReal(solution);
double f1 = 0.0;
double f2 = 0.0;
for (int i = 0; i < numberOfVariables - 1; i++) {
f1 += -10.0 * Math.exp(-0.2 * Math.sqrt(
Math.pow(x[i], 2.0) + Math.pow(x[i+1], 2.0)));
}
for (int i = 0; i < numberOfVariables; i++) {
f2 += Math.pow(Math.abs(x[i]), 0.8) +
5.0 * Math.sin(Math.pow(x[i], 3.0));
}
solution.setObjective(0, f1);
solution.setObjective(1, f2);
}
@Override
public Solution newSolution() {
Solution solution = new Solution(numberOfVariables, 2);
for (int i = 0; i < numberOfVariables; i++) {
solution.setVariable(i, new RealVariable(lowerBound, upperBound));
}
return solution;
}
}