/* Copyright 2009-2015 David Hadka * * This file is part of the MOEA Framework. * * The MOEA Framework is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * The MOEA Framework is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public * License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with the MOEA Framework. If not, see <http://www.gnu.org/licenses/>. */ package org.moeaframework.problem.misc; import org.moeaframework.core.PRNG; import org.moeaframework.core.Solution; import org.moeaframework.core.variable.EncodingUtils; import org.moeaframework.problem.AbstractProblem; import org.moeaframework.problem.AnalyticalProblem; /** * The Jimenez problem. The Pareto set is defined by the line from * {@code (40, 15)} to {@code (50, 0)}. * <p> * Properties: * <ul> * <li>Connected and symmetric Pareto set * <li>Convex Pareto front * <li>Constrained * <li>Maximization (objectives are negated) * </ul> * <p> * References: * <ol> * <li>Jimenez, F. and Verdegay, J. L. (1998). "Constrained Multiobjective * Optimization by Evolutionary Algorithms." Proceedings of the * International ICSC Symposium on Engineering of Intelligent Systems, * pp. 266-271. * <li>Van Veldhuizen, D. A (1999). "Multiobjective Evolutionary Algorithms: * Classifications, Analyses, and New Innovations." Air Force Institute * of Technology, Ph.D. Thesis, Appendix B. * </ol> */ public class Jimenez extends AbstractProblem implements AnalyticalProblem { /** * Constructs the Jimenez problem. */ public Jimenez() { super(2, 2, 4); } @Override public void evaluate(Solution solution) { double x = EncodingUtils.getReal(solution.getVariable(0)); double y = EncodingUtils.getReal(solution.getVariable(1)); double f1 = 5.0*x + 3.0*y; double f2 = 2.0*x + 8.0*y; double c1 = x + 4.0*y - 100.0; double c2 = 3.0*x + 2.0*y - 150.0; double c3 = 200.0 - 5.0*x - 3.0*y; double c4 = 75.0 - 2.0*x - 8.0*y; solution.setObjective(0, -f1); solution.setObjective(1, -f2); solution.setConstraint(0, c1 <= 0.0 ? 0.0 : c1); solution.setConstraint(1, c2 <= 0.0 ? 0.0 : c2); solution.setConstraint(2, c3 <= 0.0 ? 0.0 : c3); solution.setConstraint(3, c4 <= 0.0 ? 0.0 : c4); } @Override public Solution newSolution() { Solution solution = new Solution(2, 2, 4); solution.setVariable(0, EncodingUtils.newReal(0.0, 50.0)); solution.setVariable(1, EncodingUtils.newReal(0.0, 50.0)); return solution; } @Override public Solution generate() { Solution solution = newSolution(); double p = PRNG.nextDouble(0.0, 1.0); EncodingUtils.setReal(solution.getVariable(0), 40.0 + 10.0*p); EncodingUtils.setReal(solution.getVariable(1), 15.0 - 15.0*p); evaluate(solution); return solution; } }