/* Copyright 2009-2015 David Hadka * * This file is part of the MOEA Framework. * * The MOEA Framework is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * The MOEA Framework is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public * License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with the MOEA Framework. If not, see <http://www.gnu.org/licenses/>. */ package org.moeaframework.problem.WFG; /* This code is based on the Walking Fish Group implementation. * * Copyright 2005 The Walking Fish Group (WFG). * * This material is provided "as is", with no warranty expressed or implied. * Any use is at your own risk. Permission to use or copy this software for * any purpose is hereby granted without fee, provided this notice is * retained on all copies. Permission to modify the code and to distribute * modified code is granted, provided a notice that the code was modified is * included with the above copyright notice. * * http://www.wfg.csse.uwa.edu.au/ */ class TransFunctions { /** * Private constructor to prevent instantiation. */ private TransFunctions() { super(); } public static double b_poly(double y, double alpha) { assert (y >= 0.0) && (y <= 1.0); assert (alpha > 0.0) && (alpha != 1.0); return Misc.correct_to_01(Math.pow(y, alpha)); } public static double b_flat(double y, double A, double B, double C) { assert (y >= 0.0) && (y <= 1.0); assert (A >= 0.0) && (A <= 1.0); assert (B >= 0.0) && (B <= 1.0); assert (C >= 0.0) && (C <= 1.0); assert B < C; assert (B != 0.0) || (A == 0.0); assert (B != 0.0) || (C != 1.0); assert (C != 1.0) || (A == 1.0); assert (C != 1.0) || (B != 0.0); double tmp1 = Math.min(0.0, Math.floor(y - B)) * A * (B - y) / B; double tmp2 = Math.min(0.0, Math.floor(C - y)) * (1.0 - A) * (y - C) / (1.0 - C); return Misc.correct_to_01(A + tmp1 - tmp2); } public static double b_param(double y, double u, double A, double B, double C) { assert (y >= 0.0) && (y <= 1.0); assert (u >= 0.0) && (u <= 1.0); assert (A > 0.0) && (A < 1.0); assert B > 0.0; assert B < C; double v = A - (1.0 - 2.0 * u) * Math.abs(Math.floor(0.5 - u) + A); return Misc.correct_to_01(Math.pow(y, B + (C - B) * v)); } public static double s_linear(double y, double A) { assert (y >= 0.0) && (y <= 1.0); assert (A > 0.0) && (A < 1.0); return Misc.correct_to_01(Math.abs(y - A) / Math.abs(Math.floor(A - y) + A)); } public static double s_decept(double y, double A, double B, double C) { assert (y >= 0.0) && (y <= 1.0); assert (A > 0.0) && (A < 1.0); assert (B > 0.0) && (B < 1.0); assert (C > 0.0) && (C < 1.0); assert (A - B > 0.0) && (A + B < 1.0); double tmp1 = Math.floor(y - A + B) * (1.0 - C + (A - B) / B) / (A - B); double tmp2 = Math.floor(A + B - y) * (1.0 - C + (1.0 - A - B) / B) / (1.0 - A - B); return Misc.correct_to_01(1.0 + (Math.abs(y - A) - B) * (tmp1 + tmp2 + 1.0 / B)); } public static double s_multi(double y, int A, double B, double C) { assert (y >= 0.0) && (y <= 1.0); assert A >= 1.0; assert B >= 0.0; assert (4.0 * A + 2.0) * Math.PI >= 4.0 * B; assert (C > 0.0) && (C < 1.0); double tmp1 = Math.abs(y - C) / (2.0 * (Math.floor(C - y) + C)); double tmp2 = (4.0 * A + 2.0) * Math.PI * (0.5 - tmp1); return Misc.correct_to_01((1.0 + Math.cos(tmp2) + 4.0 * B * Math.pow(tmp1, 2.0)) / (B + 2.0)); } public static double r_sum(double[] y, double[] w) { assert y.length != 0; assert w.length == y.length; assert Misc.vector_in_01(y); double numerator = 0.0; double denominator = 0.0; for (int i = 0; i < y.length; i++) { assert w[i] > 0.0; numerator += w[i] * y[i]; denominator += w[i]; } return Misc.correct_to_01(numerator / denominator); } public static double r_nonsep(double[] y, int A) { assert y.length != 0; assert Misc.vector_in_01(y); assert (A >= 1) && (A <= y.length); assert y.length % A == 0; double numerator = 0.0; for (int j = 0; j < y.length; j++) { numerator += y[j]; for (int k = 0; k <= A - 2; k++) { numerator += Math.abs(y[j] - y[(j + k + 1) % y.length]); } } double tmp = Math.ceil(A / 2.0); double denominator = y.length * tmp * (1.0 + 2.0 * A - 2.0 * tmp) / A; return Misc.correct_to_01(numerator / denominator); } }