package com.codename1.util; /* * Ported from the Sun Microsystems FDLIBM C-library. * (Freely Distributable Library for Math) * ==================================================== * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved. * * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ /** * MathUtil for Java ME. * This fills the gap in Java ME Math with a port of Sun's public FDLIBM C-library for IEEE-754. * * @author kmashint * * @see http://www.netlib.org/fdlibm/readme * For the Freely Distributable C-library conforming to IEEE-754 floating point math. * @see http://web.mit.edu/source/third/gcc/libjava/java/lang/ * For the GNU C variant of the same IEEE-754 routines. * @see http://www.dclausen.net/projects/microfloat/ * Another take on the IEEE-754 routines. * @see http://real-java.sourceforge.net/Real.html * Yet another take on the IEEE-754 routines. * @see http://today.java.net/pub/a/today/2007/11/06/creating-java-me-math-pow-method.html * For other approximations. * @see http://martin.ankerl.com/2007/10/04/optimized-pow-approximation-for-java-and-c-c/ * For fast but rough approximations. * @see http://martin.ankerl.com/2007/02/11/optimized-exponential-functions-for-java/ * For more fast but rough approximations. */ public abstract class MathUtil { /* Common constants. */ private static final double zero = 0.0, one = 1.0, two = 2.0, tiny = 1.0e-300, huge = 1.0e+300, two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */ two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */ twom54 = 5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */ P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */ private static final double pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */ pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */ pio4_hi = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */ /* coefficient for R(x^2) */ pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */ pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */ pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */ pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */ pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */ pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */ qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */ qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */ qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */ qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */ private static final double pi_o_4 = 7.8539816339744827900E-01, /* 0x3FE921FB, 0x54442D18 */ pi_o_2 = 1.5707963267948965580E+00, /* 0x3FF921FB, 0x54442D18 */ pi = 3.1415926535897931160E+00, /* 0x400921FB, 0x54442D18 */ pi_lo = 1.2246467991473531772E-16; /* 0x3CA1A626, 0x33145C07 */ private static final double log10 = 2.302585092994046D; /* Natural log(10.0D). */ private static final long HI_MASK = 0xffffffff00000000L, LO_MASK = 0x00000000ffffffffL; private static final int HI_SHIFT = 32; /** * Return Math.E to the exponent a. * This in turn uses ieee7854_exp(double). */ public static final double exp(double a) { return ieee754_exp(a); } /** * Return the natural logarithm, ln(a), as it relates to Math.E. * This in turn uses ieee7854_log(double). */ public static final double log(double a) { return ieee754_log(a); } /** * Return the common base-10 logarithm, log10(a). * This in turn uses ieee7854_log(double)/ieee7854_log(10.0). */ public static final double log10(double a) { return ieee754_log(a) / log10; } /** * Return a to the power of b, sometimes written as a ** b * but not to be confused with the bitwise ^ operator. * This in turn uses ieee7854_log(double). */ public static final double pow(double a, double b) { return ieee754_pow(a, b); } /** * Return the arcsine of a. */ public static final double asin(double a) { return ieee754_asin(a); } /** * Return the arccosine of a. */ public static final double acos(double a) { return ieee754_acos(a); } /** * Return the arctangent of a, call it b, where a = tan(b). */ public static final double atan(double a) { return ieee754_atan(a); } /** * For any real arguments x and y not both equal to zero, atan2(y, x) * is the angle in radians between the positive x-axis of a plane * and the point given by the coordinates (x, y) on it. * The angle is positive for counter-clockwise angles (upper half-plane, y > 0), * and negative for clockwise angles (lower half-plane, y < 0). * This in turn uses ieee7854_arctan2(double). */ public static final double atan2(double b, double a) { return ieee754_atan2(a, b); } /* __ieee754_exp(x) * Returns the exponential of x. * * Method * 1. Argument reduction: * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. * Given x, find r and integer k such that * * x = k*ln2 + r, |r| <= 0.5*ln2. * * Here r will be represented as r = hi-lo for better * accuracy. * * 2. Approximation of exp(r) by a special rational function on * the interval [0,0.34658]: * Write * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... * We use a special Remes algorithm on [0,0.34658] to generate * a polynomial of degree 5 to approximate R. The maximum error * of this polynomial approximation is bounded by 2**-59. In * other words, * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 * (where z=r*r, and the values of P1 to P5 are listed below) * and * | 5 | -59 * | 2.0+P1*z+...+P5*z - R(z) | <= 2 * | | * The computation of exp(r) thus becomes * 2*r * exp(r) = 1 + ------- * R - r * r*R1(r) * = 1 + r + ----------- (for better accuracy) * 2 - R1(r) * where * 2 4 10 * R1(r) = r - (P1*r + P2*r + ... + P5*r ). * * 3. Scale back to obtain exp(x): * From step 1, we have * exp(x) = 2^k * exp(r) * * Special cases: * exp(INF) is INF, exp(NaN) is NaN; * exp(-INF) is 0, and * for finite argument, only exp(0)=1 is exact. * * Accuracy: * according to an error analysis, the error is always less than * 1 ulp (unit in the last place). * * Misc. info. * For IEEE double * if x > 7.09782712893383973096e+02 then exp(x) overflow * if x < -7.45133219101941108420e+02 then exp(x) underflow * * Constants: * The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */ private static final double twom1000 = 9.33263618503218878990e-302, /* 2**-1000=0x01700000,0*/ o_threshold = 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */ u_threshold = -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */ invln2 = 1.44269504088896338700e+00; /* 0x3ff71547, 0x652b82fe */ private static final double[] halF = new double[]{0.5, -0.5}, ln2HI = new double[]{6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */ -6.93147180369123816490e-01}, /* 0xbfe62e42, 0xfee00000 */ ln2LO = new double[]{1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */ -1.90821492927058770002e-10}; /* 0xbdea39ef, 0x35793c76 */ private static final double ieee754_exp(double x) { double y, c, t; double hi = 0, lo = 0; int k = 0; int xsb, hx, lx; long yl; long xl = Double.doubleToLongBits(x); hx = (int) ((long) xl >>> HI_SHIFT); /* high word of x */ xsb = (hx >> 31) & 1; /* sign bit of x */ hx &= 0x7fffffff; /* high word of |x| */ /* filter out non-finite argument */ if (hx >= 0x40862E42) { /* if |x|>=709.78... */ if (hx >= 0x7ff00000) { lx = (int) ((long) xl & LO_MASK); /* low word of x */ if (((hx & 0xfffff) | lx) != 0) { return x + x; /* NaN */ } else { return (xsb == 0) ? x : 0.0; /* exp(+-inf)={inf,0} */ } } if (x > o_threshold) { return huge * huge; /* overflow */ } if (x < u_threshold) { return twom1000 * twom1000; /* underflow */ } } /* argument reduction */ if (hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ if (hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ hi = x - ln2HI[xsb]; lo = ln2LO[xsb]; k = 1 - xsb - xsb; } else { k = (int) (invln2 * x + halF[xsb]); t = k; hi = x - t * ln2HI[0]; /* t*ln2HI is exact here */ lo = t * ln2LO[0]; } x = hi - lo; } else if (hx < 0x3e300000) { /* when |x|<2**-28 */ if (huge + x > one) { return one + x;/* trigger inexact */ } } //else k = 0; // handled at declaration /* x is now in primary range */ t = x * x; c = x - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5)))); if (k == 0) { return one - ((x * c) / (c - 2.0) - x); } else { y = one - ((lo - (x * c) / (2.0 - c)) - hi); } yl = Double.doubleToLongBits(y); if (k >= -1021) { yl += ((long) k << (20 + HI_SHIFT)); /* add k to y's exponent */ return Double.longBitsToDouble(yl); } else { yl += ((long) (k + 1000) << (20 + HI_SHIFT));/* add k to y's exponent */ return Double.longBitsToDouble(yl) * twom1000; } } /* __ieee754_log(x) * Return the logrithm of x * * Method : * 1. Argument Reduction: find k and f such that * x = 2^k * (1+f), * where sqrt(2)/2 < 1+f < sqrt(2) . * * 2. Approximation of log(1+f). * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) * = 2s + 2/3 s**3 + 2/5 s**5 + ....., * = 2s + s*R * We use a special Reme algorithm on [0,0.1716] to generate * a polynomial of degree 14 to approximate R The maximum error * of this polynomial approximation is bounded by 2**-58.45. In * other words, * 2 4 6 8 10 12 14 * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s * (the values of Lg1 to Lg7 are listed in the program) * and * | 2 14 | -58.45 * | Lg1*s +...+Lg7*s - R(z) | <= 2 * | | * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. * In order to guarantee error in log below 1ulp, we compute log * by * log(1+f) = f - s*(f - R) (if f is not too large) * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) * * 3. Finally, log(x) = k*ln2 + log(1+f). * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) * Here ln2 is split into two floating point number: * ln2_hi + ln2_lo, * where n*ln2_hi is always exact for |n| < 2000. * * Special cases: * log(x) is NaN with signal if x < 0 (including -INF) ; * log(+INF) is +INF; log(0) is -INF with signal; * log(NaN) is that NaN with no signal. * * Accuracy: * according to an error analysis, the error is always less than * 1 ulp (unit in the last place). * * Constants: * The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */ private static final double ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */ ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */ Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ private static final double ieee754_log(double x) { double hfsq, f, s, z, R, w, t1, t2, dk; int k, hx, lx, i, j; long xl = Double.doubleToLongBits(x); hx = (int) (xl >> HI_SHIFT); /* high word of x */ lx = (int) (xl & LO_MASK); /* low word of x */ k = 0; if (hx < 0x00100000) { /* x < 2**-1022 */ if (((hx & 0x7fffffff) | lx) == 0) { return -two54 / zero; /* log(+-0)=-inf */ } if (hx < 0) { return (x - x) / zero; /* log(-#) = NaN */ } k -= 54; x *= two54; /* subnormal number, scale up x */ hx = (int) (Double.doubleToLongBits(x) >>> HI_SHIFT); /* high word of x */ } if (hx >= 0x7ff00000) { return x + x; } k += (hx >> 20) - 1023; hx &= 0x000fffff; i = (hx + 0x95f64) & 0x100000; //__HI(x) = hx|(i^0x3ff00000); /* normalize x or x/2 */ x = Double.longBitsToDouble(((long) (hx | (i ^ 0x3ff00000)) << HI_SHIFT) | (Double.doubleToLongBits(x) & LO_MASK)); k += (i >> 20); f = x - 1.0; if ((0x000fffff & (2 + hx)) < 3) { /* |f| < 2**-20 */ if (f == zero) { if (k == 0) { return zero; } else { dk = (double) k; return dk * ln2_hi + dk * ln2_lo; } } R = f * f * (0.5 - 0.33333333333333333 * f); if (k == 0) { return f - R; } else { dk = (double) k; return dk * ln2_hi - ((R - dk * ln2_lo) - f); } } s = f / (2.0 + f); dk = (double) k; z = s * s; i = hx - 0x6147a; w = z * z; j = 0x6b851 - hx; t1 = w * (Lg2 + w * (Lg4 + w * Lg6)); t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7))); i |= j; R = t2 + t1; if (i > 0) { hfsq = 0.5 * f * f; if (k == 0) { return f - (hfsq - s * (hfsq + R)); } else { return dk * ln2_hi - ((hfsq - (s * (hfsq + R) + dk * ln2_lo)) - f); } } else { if (k == 0) { return f - s * (f - R); } else { return dk * ln2_hi - ((s * (f - R) - dk * ln2_lo) - f); } } } /* __ieee754_pow(x,y) return x**y * * n * Method: Let x = 2 * (1+f) * 1. Compute and return log2(x) in two pieces: * log2(x) = w1 + w2, * where w1 has 53-24 = 29 bit trailing zeros. * 2. Perform y*log2(x) = n+y' by simulating muti-precision * arithmetic, where |y'|<=0.5. * 3. Return x**y = 2**n*exp(y'*log2) * * Special cases: * 1. (anything) ** 0 is 1 * 2. (anything) ** 1 is itself * 3. (anything) ** NAN is NAN * 4. NAN ** (anything except 0) is NAN * 5. +-(|x| > 1) ** +INF is +INF * 6. +-(|x| > 1) ** -INF is +0 * 7. +-(|x| < 1) ** +INF is +0 * 8. +-(|x| < 1) ** -INF is +INF * 9. +-1 ** +-INF is NAN * 10. +0 ** (+anything except 0, NAN) is +0 * 11. -0 ** (+anything except 0, NAN, odd integer) is +0 * 12. +0 ** (-anything except 0, NAN) is +INF * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF * 14. -0 ** (odd integer) = -( +0 ** (odd integer) ) * 15. +INF ** (+anything except 0,NAN) is +INF * 16. +INF ** (-anything except 0,NAN) is +0 * 17. -INF ** (anything) = -0 ** (-anything) * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) * 19. (-anything except 0 and inf) ** (non-integer) is NAN * * Accuracy: * pow(x,y) returns x**y nearly rounded. In particular * pow(integer,integer) * always returns the correct integer provided it is * representable. * * Constants : * The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */ private static final double bp[] = {1.0, 1.5,}, dp_h[] = {0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */ dp_l[] = {0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */ /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */ L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */ L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */ L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */ L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */ L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */ L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */ lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */ lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */ lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */ ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */ cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */ cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */ cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/ ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */ ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/ ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/ private static final double ieee754_pow(double x, double y) { double z, ax, z_h, z_l, p_h, p_l; double y1, t1, t2, r, s, t, u, v, w; //int i0,i1; int i, j, k, yisint, n; int hx, hy, ix, iy; int lx, ly; //i0 = (int)((Double.doubleToLongBits(one)) >>> (29+HI_SHIFT))^1; //i1 = 1-i0; hx = (int) (Double.doubleToLongBits(x) >>> HI_SHIFT); lx = (int) (Double.doubleToLongBits(x) & LO_MASK); hy = (int) (Double.doubleToLongBits(y) >>> HI_SHIFT); ly = (int) (Double.doubleToLongBits(y) & LO_MASK); ix = hx & 0x7fffffff; iy = hy & 0x7fffffff; /* y==zero: x**0 = 1 */ if ((iy | ly) == 0) { return one; } /* +-NaN return x+y */ if (ix > 0x7ff00000 || ((ix == 0x7ff00000) && (lx != 0)) || iy > 0x7ff00000 || ((iy == 0x7ff00000) && (ly != 0))) { return x + y; } /* determine if y is an odd int when x < 0 * yisint = 0 ... y is not an integer * yisint = 1 ... y is an odd int * yisint = 2 ... y is an even int */ yisint = 0; if (hx < 0) { if (iy >= 0x43400000) { yisint = 2; /* even integer y */ } else if (iy >= 0x3ff00000) { k = (iy >> 20) - 0x3ff; /* exponent */ if (k > 20) { j = ly >> (52 - k); if ((j << (52 - k)) == ly) { yisint = 2 - (j & 1); } } else if (ly == 0) { j = iy >> (20 - k); if ((j << (20 - k)) == iy) { yisint = 2 - (j & 1); } } } } /* special value of y */ if (ly == 0) { if (iy == 0x7ff00000) { /* y is +-inf */ if (((ix - 0x3ff00000) | lx) == 0) { return y - y; /* inf**+-1 is NaN */ } else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */ { return (hy >= 0) ? y : zero; } else /* (|x|<1)**-,+inf = inf,0 */ { return (hy < 0) ? -y : zero; } } if (iy == 0x3ff00000) { /* y is +-1 */ if (hy < 0) { return one / x; } else { return x; } } if (hy == 0x40000000) { return x * x; /* y is 2 */ } if (hy == 0x3fe00000) { /* y is 0.5 */ if (hx >= 0) /* x >= +0 */ { return Math.sqrt(x); } } } ax = Math.abs(x); /* special value of x */ if (lx == 0) { if (ix == 0x7ff00000 || ix == 0 || ix == 0x3ff00000) { z = ax; /*x is +-0,+-inf,+-1*/ if (hy < 0) { z = one / z; /* z = (1/|x|) */ } if (hx < 0) { if (((ix - 0x3ff00000) | yisint) == 0) { z = (z - z) / (z - z); /* (-1)**non-int is NaN */ } else if (yisint == 1) { z = -z; /* (x<0)**odd = -(|x|**odd) */ } } return z; } } n = (hx >>> 31) + 1; /* (x<0)**(non-int) is NaN */ if ((n | yisint) == 0) { return (x - x) / (x - x); } s = one; /* s (sign of result -ve**odd) = -1 else = 1 */ if ((n | (yisint - 1)) == 0) { s = -one;/* (-ve)**(odd int) */ } /* |y| is huge */ if (iy > 0x41e00000) { /* if |y| > 2**31 */ if (iy > 0x43f00000) { /* if |y| > 2**64, must o/uflow */ if (ix <= 0x3fefffff) { return (hy < 0) ? huge * huge : tiny * tiny; } if (ix >= 0x3ff00000) { return (hy > 0) ? huge * huge : tiny * tiny; } } /* over/underflow if x is not close to one */ if (ix < 0x3fefffff) { return (hy < 0) ? s * huge * huge : s * tiny * tiny; } if (ix > 0x3ff00000) { return (hy > 0) ? s * huge * huge : s * tiny * tiny; } /* now |1-x| is tiny <= 2**-20, suffice to compute log(x) by x-x^2/2+x^3/3-x^4/4 */ t = x - one; /* t has 20 trailing zeros */ w = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25)); u = ivln2_h * t; /* ivln2_h has 21 sig. bits */ v = t * ivln2_l - w * ivln2; t1 = u + v; //__LO(t1) = 0; // keep high word t1 = Double.longBitsToDouble(Double.doubleToLongBits(t1) & HI_MASK); t2 = v - (t1 - u); } else { double ss, s2, s_h, s_l, t_h, t_l; n = 0; /* take care subnormal number */ if (ix < 0x00100000) { ax *= two53; n -= 53; ix = (int) (Double.doubleToLongBits(ax) >>> HI_SHIFT); } n += ((ix) >> 20) - 0x3ff; j = ix & 0x000fffff; /* determine interval */ ix = j | 0x3ff00000; /* normalize ix */ if (j <= 0x3988E) { k = 0; /* |x|<sqrt(3/2) */ } else if (j < 0xBB67A) { k = 1; /* |x|<sqrt(3) */ } else { k = 0; n += 1; ix -= 0x00100000; } //__HI(ax) = ix; ax = Double.longBitsToDouble(((long) ix << HI_SHIFT) | (Double.doubleToLongBits(ax) & LO_MASK)); /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ u = ax - bp[k]; /* bp[0]=1.0, bp[1]=1.5 */ v = one / (ax + bp[k]); ss = u * v; s_h = ss; //__LO(s_h) = 0; // keep high word s_h = Double.longBitsToDouble(Double.doubleToLongBits(s_h) & HI_MASK); /* t_h=ax+bp[k] High */ t_h = zero; //__HI(t_h)=((ix>>1)|0x20000000)+0x00080000+(k<<18); t_h = Double.longBitsToDouble(((long) ((int) ((ix >> 1) | 0x20000000) + 0x00080000 + (k << 18)) << HI_SHIFT) | (Double.doubleToLongBits(t_h) & LO_MASK)); t_l = ax - (t_h - bp[k]); s_l = v * ((u - s_h * t_h) - s_h * t_l); /* compute log(ax) */ s2 = ss * ss; r = s2 * s2 * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6))))); r += s_l * (s_h + ss); s2 = s_h * s_h; t_h = 3.0 + s2 + r; //__LO(t_h) = 0; // keep high word t_h = Double.longBitsToDouble(Double.doubleToLongBits(t_h) & HI_MASK); t_l = r - ((t_h - 3.0) - s2); /* u+v = ss*(1+...) */ u = s_h * t_h; v = s_l * t_h + t_l * ss; /* 2/(3log2)*(ss+...) */ p_h = u + v; //__LO(p_h) = 0; // keep high word p_h = Double.longBitsToDouble(Double.doubleToLongBits(p_h) & HI_MASK); p_l = v - (p_h - u); z_h = cp_h * p_h; /* cp_h+cp_l = 2/(3*log2) */ z_l = cp_l * p_h + p_l * cp + dp_l[k]; /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */ t = (double) n; t1 = (((z_h + z_l) + dp_h[k]) + t); //__LO(t1) = 0; // keep high word t1 = Double.longBitsToDouble(Double.doubleToLongBits(t1) & HI_MASK); t2 = z_l - (((t1 - t) - dp_h[k]) - z_h); } /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ y1 = y; //__LO(y1) = 0; // keep high word y1 = Double.longBitsToDouble(Double.doubleToLongBits(y1) & HI_MASK); p_l = (y - y1) * t1 + y * t2; p_h = y1 * t1; z = p_l + p_h; j = (int) (Double.doubleToLongBits(z) >>> HI_SHIFT); i = (int) (Double.doubleToLongBits(z) & LO_MASK); if (j >= 0x40900000) { /* z >= 1024 */ if (((j - 0x40900000) | i) != 0) /* if z > 1024 */ { return s * huge * huge; /* overflow */ } else { if (p_l + ovt > z - p_h) { return s * huge * huge; /* overflow */ } } } else if ((j & 0x7fffffff) >= 0x4090cc00) { /* z <= -1075 */ if (((j - 0xc090cc00) | i) != 0) /* z < -1075 */ { return s * tiny * tiny; /* underflow */ } else { if (p_l <= z - p_h) { return s * tiny * tiny; /* underflow */ } } } /* * compute 2**(p_h+p_l) */ i = j & 0x7fffffff; k = (i >> 20) - 0x3ff; n = 0; if (i > 0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */ n = j + (0x00100000 >> (k + 1)); k = ((n & 0x7fffffff) >> 20) - 0x3ff; /* new k for n */ t = zero; //__HI(t) = (n&~(0x000fffff>>k)); t = Double.longBitsToDouble(((long) (n & ~(0x000fffff >> k)) << HI_SHIFT) | (Double.doubleToLongBits(t) & LO_MASK)); n = ((n & 0x000fffff) | 0x00100000) >> (20 - k); if (j < 0) { n = -n; } p_h -= t; } t = p_l + p_h; //__LO(t) = 0; // keep high word t = Double.longBitsToDouble(Double.doubleToLongBits(t) & HI_MASK); u = t * lg2_h; v = (p_l - (t - p_h)) * lg2 + t * lg2_l; z = u + v; w = v - (z - u); t = z * z; t1 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5)))); r = (z * t1) / (t1 - two) - (w + z * w); z = one - (r - z); j = (int) ((long) Double.doubleToLongBits(z) >>> HI_SHIFT); j += (n << 20); if ((j >> 20) <= 0) { z = scalb(z, n); /* subnormal output */ } else //__HI(z) = j; { z = Double.longBitsToDouble(((long) j << HI_SHIFT) | (Double.doubleToLongBits(z) & LO_MASK)); } return s * z; } /* __ieee754_acos(x) * Method : * acos(x) = pi/2 - asin(x) * acos(-x) = pi/2 + asin(x) * For |x|<=0.5 * acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c) * For x>0.5 * acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2))) * = 2asin(sqrt((1-x)/2)) * = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z) * = 2f + (2c + 2s*z*R(z)) * where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term * for f so that f+c ~ sqrt(z). * For x<-0.5 * acos(x) = pi - 2asin(sqrt((1-|x|)/2)) * = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z) * * Special cases: * if x is NaN, return x itself; * if |x|>1, return NaN with invalid signal. * * Function needed: sqrt */ private static final double ieee754_acos(double x) { double z, p, q, r, w, s, c, df; int hx, ix; hx = (int) (Double.doubleToLongBits(x) >>> HI_SHIFT); ix = hx & 0x7fffffff; if (ix >= 0x3ff00000) { /* |x| >= 1 */ if (((ix - 0x3ff00000) | (int) (Double.doubleToLongBits(x) & LO_MASK)) == 0) { /* |x|==1 */ if (hx > 0) { return 0.0; /* acos(1) = 0 */ } else { return pi + 2.0 * pio2_lo; /* acos(-1)= pi */ } } return (x - x) / (x - x); /* acos(|x|>1) is NaN */ } if (ix < 0x3fe00000) { /* |x| < 0.5 */ if (ix <= 0x3c600000) { return pio2_hi + pio2_lo;/*if|x|<2**-57*/ } z = x * x; p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5))))); q = one + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4))); r = p / q; return pio2_hi - (x - (pio2_lo - x * r)); } else if (hx < 0) { /* x < -0.5 */ z = (one + x) * 0.5; p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5))))); q = one + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4))); s = Math.sqrt(z); r = p / q; w = r * s - pio2_lo; return pi - 2.0 * (s + w); } else { /* x > 0.5 */ z = (one - x) * 0.5; s = Math.sqrt(z); df = s; //__LO(df) = 0; // keep high word df = Double.longBitsToDouble(Double.doubleToLongBits(df) & HI_MASK); c = (z - df * df) / (s + df); p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5))))); q = one + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4))); r = p / q; w = r * s + c; return 2.0 * (df + w); } } /* __ieee754_asin(x) * Method : * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ... * we approximate asin(x) on [0,0.5] by * asin(x) = x + x*x^2*R(x^2) * where * R(x^2) is a rational approximation of (asin(x)-x)/x^3 * and its remez error is bounded by * |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75) * * For x in [0.5,1] * asin(x) = pi/2-2*asin(sqrt((1-x)/2)) * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2; * then for x>0.98 * asin(x) = pi/2 - 2*(s+s*z*R(z)) * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo) * For x<=0.98, let pio4_hi = pio2_hi/2, then * f = hi part of s; * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z) * and * asin(x) = pi/2 - 2*(s+s*z*R(z)) * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo) * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c)) * * Special cases: * if x is NaN, return x itself; * if |x|>1, return NaN with invalid signal. * */ private static final double ieee754_asin(double x) { double t, w, p, q, c, r, s; int hx, ix; hx = (int) (Double.doubleToLongBits(x) >>> HI_SHIFT); ix = hx & 0x7fffffff; if (ix >= 0x3ff00000) { /* |x|>= 1 */ if (((ix - 0x3ff00000) | (int) (Double.doubleToLongBits(x) & LO_MASK)) == 0) /* asin(1)=+-pi/2 with inexact */ { return x * pio2_hi + x * pio2_lo; } return (x - x) / (x - x); /* asin(|x|>1) is NaN */ } else if (ix < 0x3fe00000) { /* |x|<0.5 */ if (ix < 0x3e400000) { /* if |x| < 2**-27 */ if (huge + x > one) { return x;/* return x with inexact if x!=0*/ } } else { t = x * x; p = t * (pS0 + t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5))))); q = one + t * (qS1 + t * (qS2 + t * (qS3 + t * qS4))); w = p / q; return x + x * w; } } /* 1> |x|>= 0.5 */ w = one - Math.abs(x); t = w * 0.5; p = t * (pS0 + t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5))))); q = one + t * (qS1 + t * (qS2 + t * (qS3 + t * qS4))); s = Math.sqrt(t); if (ix >= 0x3FEF3333) { /* if |x| > 0.975 */ w = p / q; t = pio2_hi - (2.0 * (s + s * w) - pio2_lo); } else { w = s; //__LO(w) = 0; // keep the high word w = Double.longBitsToDouble(Double.doubleToLongBits(w) & HI_MASK); c = (t - w * w) / (s + w); r = p / q; p = 2.0 * s * r - (pio2_lo - 2.0 * c); q = pio4_hi - 2.0 * w; t = pio4_hi - (p - q); } if (hx > 0) { return t; } else { return -t; } } /* atan(x) * Method * 1. Reduce x to positive by atan(x) = -atan(-x). * 2. According to the integer k=4t+0.25 chopped, t=x, the argument * is further reduced to one of the following intervals and the * arctangent of t is evaluated by the corresponding formula: * * [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...) * [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) ) * [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) ) * [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) ) * [39/16,INF] atan(x) = atan(INF) + atan( -1/t ) * * Constants: * The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */ private static final double atanhi[] = { 4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */ 7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */ 9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */ 1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */}; private static final double atanlo[] = { 2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */ 3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */ 1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */ 6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */}; private static final double aT[] = { 3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */ -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */ 1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */ -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */ 9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */ -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */ 6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */ -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */ 4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */ -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */ 1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */}; private static final double ieee754_atan(double x) { double w, s1, s2, z; int ix, hx, id; hx = (int) (Double.doubleToLongBits(x) >>> HI_SHIFT); ix = hx & 0x7fffffff; if (ix >= 0x44100000) { /* if |x| >= 2^66 */ if (ix > 0x7ff00000 || (ix == 0x7ff00000 && ((int) (Double.doubleToLongBits(x) & LO_MASK) != 0))) { return x + x; /* NaN */ } if (hx > 0) { return atanhi[3] + atanlo[3]; } else { return -atanhi[3] - atanlo[3]; } } if (ix < 0x3fdc0000) { /* |x| < 0.4375 */ if (ix < 0x3e200000) { /* |x| < 2^-29 */ if (huge + x > one) { return x; /* raise inexact */ } } id = -1; } else { x = Math.abs(x); if (ix < 0x3ff30000) { /* |x| < 1.1875 */ if (ix < 0x3fe60000) { /* 7/16 <=|x|<11/16 */ id = 0; x = (2.0 * x - one) / (2.0 + x); } else { /* 11/16<=|x|< 19/16 */ id = 1; x = (x - one) / (x + one); } } else { if (ix < 0x40038000) { /* |x| < 2.4375 */ id = 2; x = (x - 1.5) / (one + 1.5 * x); } else { /* 2.4375 <= |x| < 2^66 */ id = 3; x = -1.0 / x; } } } /* end of argument reduction */ z = x * x; w = z * z; /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */ s1 = z * (aT[0] + w * (aT[2] + w * (aT[4] + w * (aT[6] + w * (aT[8] + w * aT[10]))))); s2 = w * (aT[1] + w * (aT[3] + w * (aT[5] + w * (aT[7] + w * aT[9])))); if (id < 0) { return x - x * (s1 + s2); } else { z = atanhi[id] - ((x * (s1 + s2) - atanlo[id]) - x); return (hx < 0) ? -z : z; } } /* __ieee754_atan2(y,x) * Method : * 1. Reduce y to positive by atan2(y,x)=-atan2(-y,x). * 2. Reduce x to positive by (if x and y are unexceptional): * ARG (x+iy) = arctan(y/x) ... if x > 0, * ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0, * * Special cases: * * ATAN2((anything), NaN ) is NaN; * ATAN2(NAN , (anything) ) is NaN; * ATAN2(+-0, +(anything but NaN)) is +-0 ; * ATAN2(+-0, -(anything but NaN)) is +-pi ; * ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2; * ATAN2(+-(anything but INF and NaN), +INF) is +-0 ; * ATAN2(+-(anything but INF and NaN), -INF) is +-pi; * ATAN2(+-INF,+INF ) is +-pi/4 ; * ATAN2(+-INF,-INF ) is +-3pi/4; * ATAN2(+-INF, (anything but,0,NaN, and INF)) is +-pi/2; * * Constants: * The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */ private static final double ieee754_atan2(double x, double y) { double z; int k, m; int hx, hy, ix, iy; int lx, ly; //i0 = (int)((Double.doubleToLongBits(one)) >> (29+HI_SHIFT))^1; //i1 = 1-i0; hx = (int) (Double.doubleToLongBits(x) >>> HI_SHIFT); lx = (int) (Double.doubleToLongBits(x) & LO_MASK); hy = (int) (Double.doubleToLongBits(y) >>> HI_SHIFT); ly = (int) (Double.doubleToLongBits(y) & LO_MASK); ix = hx & 0x7fffffff; iy = hy & 0x7fffffff; if (((ix | ((lx | -lx) >> 31)) > 0x7ff00000) || ((iy | ((ly | -ly) >> 31)) > 0x7ff00000)) /* x or y is NaN */ { return x + y; } if ((hx - 0x3ff00000 | lx) == 0) { return ieee754_atan(y); /* x=1.0 */ } m = ((hy >> 31) & 1) | ((hx >> 30) & 2); /* 2*sign(x)+sign(y) */ /* when y = 0 */ if ((iy | ly) == 0) { switch (m) { case 0: case 1: return y; /* atan(+-0,+anything)=+-0 */ case 2: return pi + tiny;/* atan(+0,-anything) = pi */ case 3: return -pi - tiny;/* atan(-0,-anything) =-pi */ } } /* when x = 0 */ if ((ix | lx) == 0) { return (hy < 0) ? -pi_o_2 - tiny : pi_o_2 + tiny; } /* when x is INF */ if (ix == 0x7ff00000) { if (iy == 0x7ff00000) { switch (m) { case 0: return pi_o_4 + tiny;/* atan(+INF,+INF) */ case 1: return -pi_o_4 - tiny;/* atan(-INF,+INF) */ case 2: return 3.0 * pi_o_4 + tiny;/*atan(+INF,-INF)*/ case 3: return -3.0 * pi_o_4 - tiny;/*atan(-INF,-INF)*/ } } else { switch (m) { case 0: return zero; /* atan(+...,+INF) */ case 1: return -zero; /* atan(-...,+INF) */ case 2: return pi + tiny; /* atan(+...,-INF) */ case 3: return -pi - tiny; /* atan(-...,-INF) */ } } } /* when y is INF */ if (iy == 0x7ff00000) { return (hy < 0) ? -pi_o_2 - tiny : pi_o_2 + tiny; } /* compute y/x */ k = (iy - ix) >> 20; if (k > 60) { z = pi_o_2 + 0.5 * pi_lo; /* |y/x| > 2**60 */ } else if (hx < 0 && k < -60) { z = 0.0; /* |y|/x < -2**60 */ } else { z = ieee754_atan(Math.abs(y / x)); /* safe to do y/x */ } switch (m) { case 0: return z; /* atan(+,+) */ case 1: return -z; /* atan(-,+) */ case 2: return pi - (z - pi_lo);/* atan(+,-) */ default: /* case 3 */ return (z - pi_lo) - pi;/* atan(-,-) */ } } /** * scalbn (double x, int n) * scalbn(x,n) returns x* 2**n computed by exponent * manipulation rather than by actually performing an * exponentiation or a multiplication. */ public static final double scalb(double x, int n) { int k, hx, lx; hx = (int) (Double.doubleToLongBits(x) >>> HI_SHIFT); lx = (int) (Double.doubleToLongBits(x) & LO_MASK); k = (hx & 0x7ff00000) >> 20; /* extract exponent */ if (k == 0) { /* 0 or subnormal x */ if ((lx | (hx & 0x7fffffff)) == 0) { return x; /* +-0 */ } x *= two54; hx = (int) (Double.doubleToLongBits(x) >>> HI_SHIFT); k = ((hx & 0x7ff00000) >> 20) - 54; if (n < -50000) { return tiny * x; /*underflow*/ } } if (k == 0x7ff) { return x + x; /* NaN or Inf */ } k = k + n; if (k > 0x7fe) { return huge * copySign(huge, x); /* overflow */ } if (k > 0) /* normal result */ { //__HI(x) = (hx&0x800fffff)|(k<<20); x = Double.longBitsToDouble(((long) ((int) (hx & 0x800fffff) | (k << 20)) << HI_SHIFT) | (Double.doubleToLongBits(x) & LO_MASK)); return x; } if (k <= -54) { if (n > 50000) /* in case integer overflow in n+k */ { return huge * copySign(huge, x); /*overflow*/ } else { return tiny * copySign(tiny, x); /*underflow*/ } } k += 54; /* subnormal result */ //__HI(x) = (hx&0x800fffff)|(k<<20); x = Double.longBitsToDouble(((long) ((int) (hx & 0x800fffff) | (k << 20)) << HI_SHIFT) | (Double.doubleToLongBits(x) & LO_MASK)); return x * twom54; } /** * Please update your code to use scalb * @param x * @param n * @return scalb(x,n) * @deprecated Please update your code to use scalb */ public static final double scalbn(double x, int n) { return scalb(x, n); } /* * copySign(double x, double y) * copySign(x,y) returns a value with the magnitude of x and * with the sign bit of y. */ public static final double copySign(final double x, final double y) { //__HI(x) = (__HI(x)&0x7fffffff)|(__HI(y)&0x80000000); // The below is actually about 30% faster than doing greater/less comparisons. return Double.longBitsToDouble((Double.doubleToLongBits(x) & 0x7fffffffffffffffL) | (Double.doubleToLongBits(y) & 0x8000000000000000L)); } /** * Please update your code to use copySign * @param x * @param y * @return copySign(x,y) * @deprecated Please update your code to use copySign */ public static final double copysign(final double x, final double y) { return copySign(x, y); } /* * fabs(x) returns the absolute value of x. * This is already handled by Java ME. public static final double fabs(double x) { //__HI(x) &= 0x7fffffff; //return Double.longBitsToDouble(Double.doubleToLongBits(x) & 0x7fffffffffffffffL); } */ /* * use a precalculated value for the ulp of Double.MAX_VALUE */ private static final double MAX_ULP = 1.9958403095347198E292; /** * Returns the size of an ulp (units in the last place) of the argument. * @param d value whose ulp is to be returned * @return size of an ulp for the argument */ public static double ulp(double d) { if (Double.isNaN(d)) { // If the argument is NaN, then the result is NaN. return Double.NaN; } if (Double.isInfinite(d)) { // If the argument is positive or negative infinity, then the // result is positive infinity. return Double.POSITIVE_INFINITY; } if (d == 0.0) { // If the argument is positive or negative zero, then the result is Double.MIN_VALUE. return Double.MIN_VALUE; } d = Math.abs(d); if (d == Double.MAX_VALUE) { // If the argument is ±Double.MAX_VALUE, then the result is equal to 2^971. return MAX_ULP; } return nextAfter(d, Double.MAX_VALUE) - d; } private static boolean isSameSign(double x, double y) { return copySign(x, y) == x; } /** * Returns the next representable floating point number after the first * argument in the direction of the second argument. * * @param start starting value * @param direction value indicating which of the neighboring representable * floating point number to return * @return The floating-point number next to {@code start} in the * direction of {@direction}. */ public static double nextAfter(final double start, final double direction) { if (Double.isNaN(start) || Double.isNaN(direction)) { // If either argument is a NaN, then NaN is returned. return Double.NaN; } if (start == direction) { // If both arguments compare as equal the second argument is returned. return direction; } final double absStart = Math.abs(start); final double absDir = Math.abs(direction); final boolean toZero = !isSameSign(start, direction) || absDir < absStart; if (toZero) { // we are reducing the magnitude, going toward zero. if (absStart == Double.MIN_VALUE) { return copySign(0.0, start); } if (Double.isInfinite(absStart)) { return copySign(Double.MAX_VALUE, start); } return copySign(Double.longBitsToDouble(Double.doubleToLongBits(absStart) - 1L), start); } else { // we are increasing the magnitude, toward +-Infinity if (start == 0.0) { return copySign(Double.MIN_VALUE, direction); } if (absStart == Double.MAX_VALUE) { return copySign(Double.POSITIVE_INFINITY, start); } return copySign(Double.longBitsToDouble(Double.doubleToLongBits(absStart) + 1L), start); } } /** * Rounds the number to the closest integer * @param a the number * @return the closest integer */ public static int round(float a) { return Math.round(a); } /** * Rounds the number to the closest integer * @param a the number * @return the closest integer */ public static long round(double a) { return Math.round(a); } /** * Rounds the number down * @param a the number * @return a rounded down number */ public static int floor(float a) { return (int)a; } /** * Rounds the number down * @param a the number * @return a rounded down number */ public static long floor(double a) { return (long)a; } }