package edu.princeton.cs.algs4; import edu.princeton.cs.algs4.ch13.Queue; import edu.princeton.cs.algs4.ch13.Stack; import edu.princeton.cs.algs4.ch42.Digraph; import edu.princeton.cs.introcs.*; /************************************************************************* * Compilation: javac TarjanSCC.java * Execution: Java TarjanSCC V E * Dependencies: Digraph.java Stack.java TransitiveClosure.java StdOut.java * * Compute the strongly-connected components of a digraph using * Tarjan's algorithm. * * Runs in O(E + V) time. * * % java TarjanSCC tinyDG.txt * 5 components * 1 * 0 2 3 4 5 * 9 10 11 12 * 6 8 * 7 * *************************************************************************/ /** * The <tt>TarjanSCC</tt> class represents a data type for * determining the strong components in a digraph. * The <em>id</em> operation determines in which strong component * a given vertex lies; the <em>areStronglyConnected</em> operation * determines whether two vertices are in the same strong component; * and the <em>count</em> operation determines the number of strong * components. * The <em>component identifier</em> of a component is one of the * vertices in the strong component: two vertices have the same component * identifier if and only if they are in the same strong component. * <p> * This implementation uses Tarjan's algorithm. * The constructor takes time proportional to <em>V</em> + <em>E</em> * (in the worst case), * where <em>V</em> is the number of vertices and <em>E</em> is the number of edges. * Afterwards, the <em>id</em>, <em>count</em>, and <em>areStronglyConnected</em> * operations take constant time. * For alternate implementations of the same API, see * {@link edu.princeton.cs.algs4.ch42.KosarajuSharirSCC} and {@link GabowSCC}. * <p> * For additional documentation, see <a href="/algs4/42digraph">Section 4.2</a> of * <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne. * * @author Robert Sedgewick * @author Kevin Wayne */ public class TarjanSCC { private boolean[] marked; // marked[v] = has v been visited? private int[] id; // id[v] = id of strong component containing v private int[] low; // low[v] = low number of v private int pre; // preorder number counter private int count; // number of strongly-connected components private Stack<Integer> stack; /** * Computes the strong components of the digraph <tt>G</tt>. * @param G the digraph */ public TarjanSCC(Digraph G) { marked = new boolean[G.V()]; stack = new Stack<Integer>(); id = new int[G.V()]; low = new int[G.V()]; for (int v = 0; v < G.V(); v++) { if (!marked[v]) dfs(G, v); } // check that id[] gives strong components assert check(G); } private void dfs(Digraph G, int v) { marked[v] = true; low[v] = pre++; int min = low[v]; stack.push(v); for (int w : G.adj(v)) { if (!marked[w]) dfs(G, w); if (low[w] < min) min = low[w]; } if (min < low[v]) { low[v] = min; return; } int w; do { w = stack.pop(); id[w] = count; low[w] = G.V(); } while (w != v); count++; } /** * Returns the number of strong components. * @return the number of strong components */ public int count() { return count; } /** * Are vertices <tt>v</tt> and <tt>w</tt> in the same strong component? * @param v one vertex * @param w the other vertex * @return <tt>true</tt> if vertices <tt>v</tt> and <tt>w</tt> are in the same * strong component, and <tt>false</tt> otherwise */ public boolean stronglyConnected(int v, int w) { return id[v] == id[w]; } /** * Returns the component id of the strong component containing vertex <tt>v</tt>. * @param v the vertex * @return the component id of the strong component containing vertex <tt>v</tt> */ public int id(int v) { return id[v]; } // does the id[] array contain the strongly connected components? private boolean check(Digraph G) { TransitiveClosure tc = new TransitiveClosure(G); for (int v = 0; v < G.V(); v++) { for (int w = 0; w < G.V(); w++) { if (stronglyConnected(v, w) != (tc.reachable(v, w) && tc.reachable(w, v))) return false; } } return true; } /** * Unit tests the <tt>TarjanSCC</tt> data type. */ public static void main(String[] args) { In in = new In(args[0]); Digraph G = new Digraph(in); TarjanSCC scc = new TarjanSCC(G); // number of connected components int M = scc.count(); StdOut.println(M + " components"); // compute list of vertices in each strong component Queue<Integer>[] components = (Queue<Integer>[]) new Queue[M]; for (int i = 0; i < M; i++) { components[i] = new Queue<Integer>(); } for (int v = 0; v < G.V(); v++) { components[scc.id(v)].enqueue(v); } // print results for (int i = 0; i < M; i++) { for (int v : components[i]) { StdOut.print(v + " "); } StdOut.println(); } } } /************************************************************************* * Copyright 2002-2012, Robert Sedgewick and Kevin Wayne. * * This file is part of algs4-package.jar, which accompanies the textbook * * Algorithms, 4th edition by Robert Sedgewick and Kevin Wayne, * Addison-Wesley Professional, 2011, ISBN 0-321-57351-X. * http://algs4.cs.princeton.edu * * * algs4-package.jar is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * algs4-package.jar is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with algs4-package.jar. If not, see http://www.gnu.org/licenses. *************************************************************************/