/* * JaamSim Discrete Event Simulation * Copyright (C) 2013 Ausenco Engineering Canada Inc. * Copyright (C) 2016 JaamSim Software Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.jaamsim.ProbabilityDistributions; import com.jaamsim.Samples.SampleConstant; import com.jaamsim.Samples.SampleInput; import com.jaamsim.input.Keyword; import com.jaamsim.rng.MRG1999a; import com.jaamsim.units.DimensionlessUnit; import com.jaamsim.units.Unit; import com.jaamsim.units.UserSpecifiedUnit; /** * LogNormal Distribution. * Adapted from A.M. Law, "Simulation Modelling and Analysis, 4th Edition", page 454. * Polar Method, Marsaglia and Bray (1964) is used to calculate the normal distribution */ public class LogNormalDistribution extends Distribution { @Keyword(description = "The scale parameter for the Log-Normal distribution.", exampleList = {"3.0 h", "InputValue1", "'2 * [InputValue1].Value'"}) private final SampleInput scaleInput; @Keyword(description = "The mean of the dimensionless normal distribution (not the mean of the lognormal).", exampleList = {"5.0", "InputValue1", "'2 * [InputValue1].Value'"}) private final SampleInput normalMeanInput; @Keyword(description = "The standard deviation of the dimensionless normal distribution (not the standard deviation of the lognormal).", exampleList = {"2.0", "InputValue1", "'2 * [InputValue1].Value'"}) private final SampleInput normalStandardDeviationInput; private final MRG1999a rng1 = new MRG1999a(); private final MRG1999a rng2 = new MRG1999a(); { minValueInput.setDefaultValue(new SampleConstant(0.0d)); scaleInput = new SampleInput("Scale", "Key Inputs", new SampleConstant(1.0d)); scaleInput.setValidRange(0.0, Double.POSITIVE_INFINITY); scaleInput.setUnitType(UserSpecifiedUnit.class); scaleInput.setEntity(this); this.addInput(scaleInput); normalMeanInput = new SampleInput("NormalMean", "Key Inputs", new SampleConstant(0.0d)); normalMeanInput.setUnitType(DimensionlessUnit.class); normalMeanInput.setEntity(this); this.addInput(normalMeanInput); normalStandardDeviationInput = new SampleInput("NormalStandardDeviation", "Key Inputs", new SampleConstant(1.0d)); normalStandardDeviationInput.setUnitType(DimensionlessUnit.class); normalStandardDeviationInput.setValidRange(0.0d, Double.POSITIVE_INFINITY); normalStandardDeviationInput.setEntity(this); this.addInput(normalStandardDeviationInput); } public LogNormalDistribution() {} @Override public void earlyInit() { super.earlyInit(); rng1.setSeedStream(getStreamNumber() , getSubstreamNumber()); rng2.setSeedStream(getStreamNumber() + 1, getSubstreamNumber()); } @Override protected void setUnitType(Class<? extends Unit> specified) { super.setUnitType(specified); scaleInput.setUnitType(specified); } @Override protected double getSample(double simTime) { // Loop until we have a random x-y coordinate in the unit circle double w, v1, v2, sample; do { v1 = 2.0 * rng1.nextUniform() - 1.0; v2 = 2.0 * rng2.nextUniform() - 1.0; w = ( v1 * v1 ) + ( v2 * v2 ); } while( w > 1.0 || w == 0.0 ); // Calculate the normalised random sample // (normally distributed with mode = 0 and standard deviation = 1) sample = v1 * Math.sqrt( -2.0 * Math.log( w ) / w ); // Adjust for the desired mode and standard deviation double mean = normalMeanInput.getValue().getNextSample(simTime); double sd = normalStandardDeviationInput.getValue().getNextSample(simTime); sample = mean + sample*sd; // Convert to lognormal double scale = scaleInput.getValue().getNextSample(simTime); return scale * Math.exp(sample); } @Override protected double getMean(double simTime) { double mean = normalMeanInput.getValue().getNextSample(simTime); double sd = normalStandardDeviationInput.getValue().getNextSample(simTime); double scale = scaleInput.getValue().getNextSample(simTime); return scale * Math.exp(mean + sd*sd/2.0); } @Override protected double getStandardDev(double simTime) { double sd = normalStandardDeviationInput.getValue().getNextSample(simTime); return this.getMean(simTime) * Math.sqrt( Math.exp(sd*sd) - 1.0 ); } }