/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ package org.apache.cassandra.utils.btree; import java.util.ArrayDeque; import java.util.Arrays; import java.util.Collection; import java.util.Comparator; import java.util.Queue; import org.apache.cassandra.utils.ObjectSizes; import static org.apache.cassandra.utils.btree.UpdateFunction.NoOp; public class BTree { /** * Leaf Nodes are a raw array of values: Object[V1, V1, ...,]. * * Branch Nodes: Object[V1, V2, ..., child[<V1.key], child[<V2.key], ..., child[< Inf]], where * each child is another node, i.e., an Object[]. Thus, the value elements in a branch node are the * first half of the array, rounding down. In our implementation, each value must include its own key; * we access these via Comparator, rather than directly. * * So we can quickly distinguish between leaves and branches, we require that leaf nodes are always even number * of elements (padded with a null, if necessary), and branches are always an odd number of elements. * * BTrees are immutable; updating one returns a new tree that reuses unmodified nodes. * * There are no references back to a parent node from its children. (This would make it impossible to re-use * subtrees when modifying the tree, since the modified tree would need new parent references.) * Instead, we store these references in a Path as needed when navigating the tree. */ // The maximum fan factor used for B-Trees static final int FAN_SHIFT; static { int fanfactor = 32; if (System.getProperty("cassandra.btree.fanfactor") != null) fanfactor = Integer.parseInt(System.getProperty("cassandra.btree.fanfactor")); int shift = 1; while (1 << shift < fanfactor) shift += 1; FAN_SHIFT = shift; } // NB we encode Path indexes as Bytes, so this needs to be less than Byte.MAX_VALUE / 2 static final int FAN_FACTOR = 1 << FAN_SHIFT; // An empty BTree Leaf - which is the same as an empty BTree static final Object[] EMPTY_LEAF = new Object[0]; // An empty BTree branch - used only for internal purposes in Modifier static final Object[] EMPTY_BRANCH = new Object[1]; /** * Returns an empty BTree * * @return */ public static Object[] empty() { return EMPTY_LEAF; } public static <V> Object[] build(Collection<V> source, Comparator<V> comparator, boolean sorted, UpdateFunction<V> updateF) { return build(source, source.size(), comparator, sorted, updateF); } /** * Creates a BTree containing all of the objects in the provided collection * * @param source the items to build the tree with * @param comparator the comparator that defines the ordering over the items in the tree * @param sorted if false, the collection will be copied and sorted to facilitate construction * @param <V> * @return */ public static <V> Object[] build(Iterable<V> source, int size, Comparator<V> comparator, boolean sorted, UpdateFunction<V> updateF) { if (size < FAN_FACTOR) { // pad to even length to match contract that all leaf nodes are even V[] values = (V[]) new Object[size + (size & 1)]; { int i = 0; for (V v : source) values[i++] = v; } // inline sorting since we're already calling toArray if (!sorted) Arrays.sort(values, 0, size, comparator); // if updateF is specified if (updateF != null) { for (int i = 0 ; i < size ; i++) values[i] = updateF.apply(values[i]); updateF.allocated(ObjectSizes.sizeOfArray(values)); } return values; } if (!sorted) source = sorted(source, comparator, size); Queue<Builder> queue = modifier.get(); Builder builder = queue.poll(); if (builder == null) builder = new Builder(); Object[] btree = builder.build(source, updateF, size); queue.add(builder); return btree; } /** * Returns a new BTree with the provided set inserting/replacing as necessary any equal items * * @param btree the tree to update * @param comparator the comparator that defines the ordering over the items in the tree * @param updateWith the items to either insert / update * @param updateWithIsSorted if false, updateWith will be copied and sorted to facilitate construction * @param <V> * @return */ public static <V> Object[] update(Object[] btree, Comparator<V> comparator, Collection<V> updateWith, boolean updateWithIsSorted) { return update(btree, comparator, updateWith, updateWithIsSorted, NoOp.<V>instance()); } public static <V> Object[] update(Object[] btree, Comparator<V> comparator, Collection<V> updateWith, boolean updateWithIsSorted, UpdateFunction<V> updateF) { return update(btree, comparator, updateWith, updateWith.size(), updateWithIsSorted, updateF); } /** * Returns a new BTree with the provided set inserting/replacing as necessary any equal items * * @param btree the tree to update * @param comparator the comparator that defines the ordering over the items in the tree * @param updateWith the items to either insert / update * @param updateWithIsSorted if false, updateWith will be copied and sorted to facilitate construction * @param updateF the update function to apply to any pairs we are swapping, and maybe abort early * @param <V> * @return */ public static <V> Object[] update(Object[] btree, Comparator<V> comparator, Iterable<V> updateWith, int updateWithLength, boolean updateWithIsSorted, UpdateFunction<V> updateF) { if (btree.length == 0) return build(updateWith, updateWithLength, comparator, updateWithIsSorted, updateF); if (!updateWithIsSorted) updateWith = sorted(updateWith, comparator, updateWithLength); Queue<Builder> queue = modifier.get(); Builder builder = queue.poll(); if (builder == null) builder = new Builder(); btree = builder.update(btree, comparator, updateWith, updateF); queue.add(builder); return btree; } /** * Returns an Iterator over the entire tree * * @param btree the tree to iterate over * @param forwards if false, the iterator will start at the end and move backwards * @param <V> * @return */ public static <V> Cursor<V, V> slice(Object[] btree, boolean forwards) { Cursor<V, V> r = new Cursor<>(); r.reset(btree, forwards); return r; } /** * Returns an Iterator over a sub-range of the tree * * @param btree the tree to iterate over * @param comparator the comparator that defines the ordering over the items in the tree * @param start the first item to include * @param end the last item to include * @param forwards if false, the iterator will start at end and move backwards * @param <V> * @return */ public static <K, V extends K> Cursor<K, V> slice(Object[] btree, Comparator<K> comparator, K start, K end, boolean forwards) { Cursor<K, V> r = new Cursor<>(); r.reset(btree, comparator, start, end, forwards); return r; } /** * Returns an Iterator over a sub-range of the tree * * @param btree the tree to iterate over * @param comparator the comparator that defines the ordering over the items in the tree * @param start the first item to include * @param end the last item to include * @param forwards if false, the iterator will start at end and move backwards * @param <V> * @return */ public static <K, V extends K> Cursor<K, V> slice(Object[] btree, Comparator<K> comparator, K start, boolean startInclusive, K end, boolean endInclusive, boolean forwards) { Cursor<K, V> r = new Cursor<>(); r.reset(btree, comparator, start, startInclusive, end, endInclusive, forwards); return r; } public static <V> V find(Object[] node, Comparator<V> comparator, V find) { while (true) { int keyEnd = getKeyEnd(node); int i = BTree.find(comparator, find, node, 0, keyEnd); if (i >= 0) { return (V) node[i]; } else if (!isLeaf(node)) { i = -i - 1; node = (Object[]) node[keyEnd + i]; } else { return null; } } } // UTILITY METHODS // same basic semantics as Arrays.binarySearch, but delegates to compare() method to avoid // wrapping generic Comparator with support for Special +/- infinity sentinels static <V> int find(Comparator<V> comparator, Object key, Object[] a, final int fromIndex, final int toIndex) { int low = fromIndex; int high = toIndex - 1; while (low <= high) { int mid = (low + high) / 2; int cmp = comparator.compare((V) key, (V) a[mid]); if (cmp > 0) low = mid + 1; else if (cmp < 0) high = mid - 1; else return mid; // key found } return -(low + 1); // key not found. } // get the upper bound we should search in for keys in the node static int getKeyEnd(Object[] node) { if (isLeaf(node)) return getLeafKeyEnd(node); else return getBranchKeyEnd(node); } // get the last index that is non-null in the leaf node static int getLeafKeyEnd(Object[] node) { int len = node.length; if (len == 0) return 0; else if (node[len - 1] == null) return len - 1; else return len; } // return the boundary position between keys/children for the branch node static int getBranchKeyEnd(Object[] node) { return node.length / 2; } // returns true if the provided node is a leaf, false if it is a branch static boolean isLeaf(Object[] node) { return (node.length & 1) == 0; } public static boolean isEmpty(Object[] tree) { return tree.length == 0; } public static int depth(Object[] tree) { int depth = 1; while (!isLeaf(tree)) { depth++; tree = (Object[]) tree[getKeyEnd(tree)]; } return depth; } // Special class for making certain operations easier, so we can define a +/- Inf static interface Special extends Comparable<Object> { } static final Special POSITIVE_INFINITY = new Special() { public int compareTo(Object o) { return o == this ? 0 : 1; } }; static final Special NEGATIVE_INFINITY = new Special() { public int compareTo(Object o) { return o == this ? 0 : -1; } }; private static final ThreadLocal<Queue<Builder>> modifier = new ThreadLocal<Queue<Builder>>() { @Override protected Queue<Builder> initialValue() { return new ArrayDeque<>(); } }; // return a sorted collection private static <V> Collection<V> sorted(Iterable<V> source, Comparator<V> comparator, int size) { V[] vs = (V[]) new Object[size]; int i = 0; for (V v : source) vs[i++] = v; Arrays.sort(vs, comparator); return Arrays.asList(vs); } /** simple static wrapper to calls to cmp.compare() which checks if either a or b are Special (i.e. represent an infinity) */ // TODO : cheaper to check for POSITIVE/NEGATIVE infinity in callers, rather than here static <V> int compare(Comparator<V> cmp, Object a, Object b) { if (a instanceof Special) return ((Special) a).compareTo(b); if (b instanceof Special) return -((Special) b).compareTo(a); return cmp.compare((V) a, (V) b); } public static boolean isWellFormed(Object[] btree, Comparator<? extends Object> cmp) { return isWellFormed(cmp, btree, true, NEGATIVE_INFINITY, POSITIVE_INFINITY); } private static boolean isWellFormed(Comparator<?> cmp, Object[] node, boolean isRoot, Object min, Object max) { if (cmp != null && !isNodeWellFormed(cmp, node, min, max)) return false; if (isLeaf(node)) { if (isRoot) return node.length <= FAN_FACTOR; return node.length >= FAN_FACTOR / 2 && node.length <= FAN_FACTOR; } int type = 0; int childOffset = getBranchKeyEnd(node); // compare each child node with the branch element at the head of this node it corresponds with for (int i = childOffset; i < node.length; i++) { Object[] child = (Object[]) node[i]; Object localmax = i < node.length - 1 ? node[i - childOffset] : max; if (!isWellFormed(cmp, child, false, min, localmax)) return false; type |= isLeaf(child) ? 1 : 2; min = localmax; } return type < 3; // either all leaves or all branches but not a mix } private static boolean isNodeWellFormed(Comparator<?> cmp, Object[] node, Object min, Object max) { Object previous = min; int end = getKeyEnd(node); for (int i = 0; i < end; i++) { Object current = node[i]; if (compare(cmp, previous, current) >= 0) return false; previous = current; } return compare(cmp, previous, max) < 0; } }