/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.cassandra.dht; import java.io.Serializable; import java.util.*; import org.apache.commons.lang3.ObjectUtils; import org.apache.cassandra.db.RowPosition; import org.apache.cassandra.service.StorageService; import org.apache.cassandra.utils.Pair; /** * A representation of the range that a node is responsible for on the DHT ring. * * A Range is responsible for the tokens between (left, right]. * * Used by the partitioner and by map/reduce by-token range scans. */ public class Range<T extends RingPosition<T>> extends AbstractBounds<T> implements Comparable<Range<T>>, Serializable { public static final long serialVersionUID = 1L; public Range(T left, T right) { this(left, right, StorageService.getPartitioner()); } public Range(T left, T right, IPartitioner partitioner) { super(left, right, partitioner); } public static <T extends RingPosition<T>> boolean contains(T left, T right, T point) { if (isWrapAround(left, right)) { /* * We are wrapping around, so the interval is (a,b] where a >= b, * then we have 3 cases which hold for any given token k: * (1) a < k -- return true * (2) k <= b -- return true * (3) b < k <= a -- return false */ if (point.compareTo(left) > 0) return true; else return right.compareTo(point) >= 0; } else { /* * This is the range (a, b] where a < b. */ return point.compareTo(left) > 0 && right.compareTo(point) >= 0; } } public boolean contains(Range<T> that) { if (this.left.equals(this.right)) { // full ring always contains all other ranges return true; } boolean thiswraps = isWrapAround(left, right); boolean thatwraps = isWrapAround(that.left, that.right); if (thiswraps == thatwraps) { return left.compareTo(that.left) <= 0 && that.right.compareTo(right) <= 0; } else if (thiswraps) { // wrapping might contain non-wrapping // that is contained if both its tokens are in one of our wrap segments return left.compareTo(that.left) <= 0 || that.right.compareTo(right) <= 0; } else { // (thatwraps) // non-wrapping cannot contain wrapping return false; } } /** * Helps determine if a given point on the DHT ring is contained * in the range in question. * @param point point in question * @return true if the point contains within the range else false. */ public boolean contains(T point) { return contains(left, right, point); } /** * @param that range to check for intersection * @return true if the given range intersects with this range. */ public boolean intersects(Range<T> that) { return intersectionWith(that).size() > 0; } public boolean intersects(AbstractBounds<T> that) { // implemented for cleanup compaction membership test, so only Range + Bounds are supported for now if (that instanceof Range) return intersects((Range<T>) that); if (that instanceof Bounds) return intersects((Bounds<T>) that); throw new UnsupportedOperationException("Intersection is only supported for Bounds and Range objects; found " + that.getClass()); } /** * @param that range to check for intersection * @return true if the given range intersects with this range. */ public boolean intersects(Bounds<T> that) { // Same punishment than in Bounds.contains(), we must be carefull if that.left == that.right as // as new Range<T>(that.left, that.right) will then cover the full ring which is not what we // want. return contains(that.left) || (!that.left.equals(that.right) && intersects(new Range<T>(that.left, that.right))); } @SafeVarargs public static <T extends RingPosition<T>> Set<Range<T>> rangeSet(Range<T> ... ranges) { return Collections.unmodifiableSet(new HashSet<Range<T>>(Arrays.asList(ranges))); } public static <T extends RingPosition<T>> Set<Range<T>> rangeSet(Range<T> range) { return Collections.singleton(range); } /** * @param that * @return the intersection of the two Ranges. this can be two disjoint Ranges if one is wrapping and one is not. * say you have nodes G and M, with query range (D,T]; the intersection is (M-T] and (D-G]. * If there is no intersection, an empty list is returned. */ public Set<Range<T>> intersectionWith(Range<T> that) { if (that.contains(this)) return rangeSet(this); if (this.contains(that)) return rangeSet(that); boolean thiswraps = isWrapAround(left, right); boolean thatwraps = isWrapAround(that.left, that.right); if (!thiswraps && !thatwraps) { // neither wraps. the straightforward case. if (!(left.compareTo(that.right) < 0 && that.left.compareTo(right) < 0)) return Collections.emptySet(); return rangeSet(new Range<T>(ObjectUtils.max(this.left, that.left), ObjectUtils.min(this.right, that.right), partitioner)); } if (thiswraps && thatwraps) { // if the starts are the same, one contains the other, which we have already ruled out. assert !this.left.equals(that.left); // two wrapping ranges always intersect. // since we have already determined that neither this nor that contains the other, we have 2 cases, // and mirror images of those case. // (1) both of that's (1, 2] endpoints lie in this's (A, B] right segment: // ---------B--------A--1----2------> // (2) only that's start endpoint lies in this's right segment: // ---------B----1---A-------2------> // or, we have the same cases on the left segement, which we can handle by swapping this and that. return this.left.compareTo(that.left) < 0 ? intersectionBothWrapping(this, that) : intersectionBothWrapping(that, this); } if (thiswraps && !thatwraps) return intersectionOneWrapping(this, that); assert (!thiswraps && thatwraps); return intersectionOneWrapping(that, this); } private static <T extends RingPosition<T>> Set<Range<T>> intersectionBothWrapping(Range<T> first, Range<T> that) { Set<Range<T>> intersection = new HashSet<Range<T>>(2); if (that.right.compareTo(first.left) > 0) intersection.add(new Range<T>(first.left, that.right, first.partitioner)); intersection.add(new Range<T>(that.left, first.right, first.partitioner)); return Collections.unmodifiableSet(intersection); } private static <T extends RingPosition<T>> Set<Range<T>> intersectionOneWrapping(Range<T> wrapping, Range<T> other) { Set<Range<T>> intersection = new HashSet<Range<T>>(2); if (other.contains(wrapping.right)) intersection.add(new Range<T>(other.left, wrapping.right, wrapping.partitioner)); // need the extra compareto here because ranges are asymmetrical; wrapping.left _is not_ contained by the wrapping range if (other.contains(wrapping.left) && wrapping.left.compareTo(other.right) < 0) intersection.add(new Range<T>(wrapping.left, other.right, wrapping.partitioner)); return Collections.unmodifiableSet(intersection); } public Pair<AbstractBounds<T>, AbstractBounds<T>> split(T position) { assert contains(position) || left.equals(position); // Check if the split would have no effect on the range if (position.equals(left) || position.equals(right)) return null; AbstractBounds<T> lb = new Range<T>(left, position, partitioner); AbstractBounds<T> rb = new Range<T>(position, right, partitioner); return Pair.create(lb, rb); } public boolean inclusiveLeft() { return false; } public boolean inclusiveRight() { return true; } public List<Range<T>> unwrap() { @SuppressWarnings("unchecked") T minValue = (T) partitioner.minValue(right.getClass()); if (!isWrapAround() || right.equals(minValue)) return Arrays.asList(this); List<Range<T>> unwrapped = new ArrayList<Range<T>>(2); unwrapped.add(new Range<T>(left, minValue, partitioner)); unwrapped.add(new Range<T>(minValue, right, partitioner)); return unwrapped; } /** * Tells if the given range is a wrap around. */ public static <T extends RingPosition<T>> boolean isWrapAround(T left, T right) { return left.compareTo(right) >= 0; } public int compareTo(Range<T> rhs) { /* * If the range represented by the "this" pointer * is a wrap around then it is the smaller one. */ if ( isWrapAround(left, right) ) return -1; if ( isWrapAround(rhs.left, rhs.right) ) return 1; return right.compareTo(rhs.right); } /** * Subtracts a portion of this range. * @param contained The range to subtract from this. It must be totally * contained by this range. * @return An ArrayList of the Ranges left after subtracting contained * from this. */ private ArrayList<Range<T>> subtractContained(Range<T> contained) { ArrayList<Range<T>> difference = new ArrayList<Range<T>>(2); if (!left.equals(contained.left)) difference.add(new Range<T>(left, contained.left, partitioner)); if (!right.equals(contained.right)) difference.add(new Range<T>(contained.right, right, partitioner)); return difference; } public Set<Range<T>> subtract(Range<T> rhs) { return rhs.differenceToFetch(this); } /** * Calculate set of the difference ranges of given two ranges * (as current (A, B] and rhs is (C, D]) * which node will need to fetch when moving to a given new token * * @param rhs range to calculate difference * @return set of difference ranges */ public Set<Range<T>> differenceToFetch(Range<T> rhs) { Set<Range<T>> result; Set<Range<T>> intersectionSet = this.intersectionWith(rhs); if (intersectionSet.isEmpty()) { result = new HashSet<Range<T>>(); result.add(rhs); } else { @SuppressWarnings("unchecked") Range<T>[] intersections = (Range<T>[]) new Range[intersectionSet.size()]; intersectionSet.toArray(intersections); if (intersections.length == 1) { result = new HashSet<Range<T>>(rhs.subtractContained(intersections[0])); } else { // intersections.length must be 2 Range<T> first = intersections[0]; Range<T> second = intersections[1]; ArrayList<Range<T>> temp = rhs.subtractContained(first); // Because there are two intersections, subtracting only one of them // will yield a single Range. Range<T> single = temp.get(0); result = new HashSet<Range<T>>(single.subtractContained(second)); } } return result; } public static <T extends RingPosition<T>> boolean isInRanges(T token, Iterable<Range<T>> ranges) { assert ranges != null; for (Range<T> range : ranges) { if (range.contains(token)) { return true; } } return false; } @Override public boolean equals(Object o) { if (!(o instanceof Range)) return false; Range<?> rhs = (Range<?>)o; return left.equals(rhs.left) && right.equals(rhs.right); } @Override public String toString() { return "(" + left + "," + right + "]"; } protected String getOpeningString() { return "("; } protected String getClosingString() { return "]"; } public List<String> asList() { ArrayList<String> ret = new ArrayList<String>(2); ret.add(left.toString()); ret.add(right.toString()); return ret; } public boolean isWrapAround() { return isWrapAround(left, right); } /** * @return A copy of the given list of with all ranges unwrapped, sorted by left bound and with overlapping bounds merged. */ public static <T extends RingPosition<T>> List<Range<T>> normalize(Collection<Range<T>> ranges) { // unwrap all List<Range<T>> output = new ArrayList<Range<T>>(ranges.size()); for (Range<T> range : ranges) output.addAll(range.unwrap()); // sort by left Collections.sort(output, new Comparator<Range<T>>() { public int compare(Range<T> b1, Range<T> b2) { return b1.left.compareTo(b2.left); } }); // deoverlap return deoverlap(output); } /** * Given a list of unwrapped ranges sorted by left position, return an * equivalent list of ranges but with no overlapping ranges. */ private static <T extends RingPosition<T>> List<Range<T>> deoverlap(List<Range<T>> ranges) { if (ranges.isEmpty()) return ranges; List<Range<T>> output = new ArrayList<Range<T>>(); Iterator<Range<T>> iter = ranges.iterator(); Range<T> current = iter.next(); @SuppressWarnings("unchecked") T min = (T) current.partitioner.minValue(current.left.getClass()); while (iter.hasNext()) { // If current goes to the end of the ring, we're done if (current.right.equals(min)) { // If one range is the full range, we return only that if (current.left.equals(min)) return Collections.<Range<T>>singletonList(current); output.add(new Range<T>(current.left, min)); return output; } Range<T> next = iter.next(); // if next left is equal to current right, we do not intersect per se, but replacing (A, B] and (B, C] by (A, C] is // legit, and since this avoid special casing and will result in more "optimal" ranges, we do the transformation if (next.left.compareTo(current.right) <= 0) { // We do overlap // (we've handled current.right.equals(min) already) if (next.right.equals(min) || current.right.compareTo(next.right) < 0) current = new Range<T>(current.left, next.right); } else { output.add(current); current = next; } } output.add(current); return output; } /** * Compute a range of keys corresponding to a given range of token. */ public static Range<RowPosition> makeRowRange(Token left, Token right, IPartitioner partitioner) { return new Range<RowPosition>(left.maxKeyBound(partitioner), right.maxKeyBound(partitioner), partitioner); } @SuppressWarnings("unchecked") public AbstractBounds<RowPosition> toRowBounds() { return (left instanceof Token) ? makeRowRange((Token)left, (Token)right, partitioner) : (Range<RowPosition>)this; } @SuppressWarnings("unchecked") public AbstractBounds<Token> toTokenBounds() { return (left instanceof RowPosition) ? new Range<Token>(((RowPosition)left).getToken(), ((RowPosition)right).getToken(), partitioner) : (Range<Token>)this; } public AbstractBounds<T> withNewRight(T newRight) { return new Range<T>(left, newRight); } }