package org.apache.lucene.index.memory; /* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import java.io.IOException; import java.io.StringReader; import java.util.Arrays; import java.util.Collection; import java.util.Comparator; import java.util.HashMap; import java.util.Iterator; import java.util.Map; import java.util.NoSuchElementException; import org.apache.lucene.analysis.Analyzer; import org.apache.lucene.analysis.TokenStream; import org.apache.lucene.analysis.tokenattributes.CharTermAttribute; import org.apache.lucene.analysis.tokenattributes.OffsetAttribute; import org.apache.lucene.analysis.tokenattributes.PositionIncrementAttribute; import org.apache.lucene.analysis.tokenattributes.TermToBytesRefAttribute; import org.apache.lucene.index.AtomicReader; import org.apache.lucene.index.AtomicReaderContext; import org.apache.lucene.index.FieldInfo; import org.apache.lucene.index.Norm; import org.apache.lucene.index.DocValues; import org.apache.lucene.index.DocsAndPositionsEnum; import org.apache.lucene.index.DocsEnum; import org.apache.lucene.index.FieldInfos; import org.apache.lucene.index.FieldInvertState; import org.apache.lucene.index.Fields; import org.apache.lucene.index.OrdTermState; import org.apache.lucene.index.StoredFieldVisitor; import org.apache.lucene.index.TermState; import org.apache.lucene.index.Terms; import org.apache.lucene.index.TermsEnum; import org.apache.lucene.index.FieldInfo.IndexOptions; import org.apache.lucene.index.memory.MemoryIndexNormDocValues.SingleValueSource; import org.apache.lucene.search.Collector; import org.apache.lucene.search.IndexSearcher; import org.apache.lucene.search.Query; import org.apache.lucene.search.Scorer; import org.apache.lucene.search.similarities.Similarity; import org.apache.lucene.store.RAMDirectory; // for javadocs import org.apache.lucene.util.ArrayUtil; import org.apache.lucene.util.Bits; import org.apache.lucene.util.BytesRef; import org.apache.lucene.util.Constants; // for javadocs import org.apache.lucene.util.RamUsageEstimator; /** * High-performance single-document main memory Apache Lucene fulltext search index. * * <h4>Overview</h4> * * This class is a replacement/substitute for a large subset of * {@link RAMDirectory} functionality. It is designed to * enable maximum efficiency for on-the-fly matchmaking combining structured and * fuzzy fulltext search in realtime streaming applications such as Nux XQuery based XML * message queues, publish-subscribe systems for Blogs/newsfeeds, text chat, data acquisition and * distribution systems, application level routers, firewalls, classifiers, etc. * Rather than targeting fulltext search of infrequent queries over huge persistent * data archives (historic search), this class targets fulltext search of huge * numbers of queries over comparatively small transient realtime data (prospective * search). * For example as in * <pre class="prettyprint"> * float score = search(String text, Query query) * </pre> * <p> * Each instance can hold at most one Lucene "document", with a document containing * zero or more "fields", each field having a name and a fulltext value. The * fulltext value is tokenized (split and transformed) into zero or more index terms * (aka words) on <code>addField()</code>, according to the policy implemented by an * Analyzer. For example, Lucene analyzers can split on whitespace, normalize to lower case * for case insensitivity, ignore common terms with little discriminatory value such as "he", "in", "and" (stop * words), reduce the terms to their natural linguistic root form such as "fishing" * being reduced to "fish" (stemming), resolve synonyms/inflexions/thesauri * (upon indexing and/or querying), etc. For details, see * <a target="_blank" href="http://today.java.net/pub/a/today/2003/07/30/LuceneIntro.html">Lucene Analyzer Intro</a>. * <p> * Arbitrary Lucene queries can be run against this class - see <a target="_blank" * href="{@docRoot}/../queryparser/org/apache/lucene/queryparser/classic/package-summary.html#package_description"> * Lucene Query Syntax</a> * as well as <a target="_blank" * href="http://today.java.net/pub/a/today/2003/11/07/QueryParserRules.html">Query Parser Rules</a>. * Note that a Lucene query selects on the field names and associated (indexed) * tokenized terms, not on the original fulltext(s) - the latter are not stored * but rather thrown away immediately after tokenization. * <p> * For some interesting background information on search technology, see Bob Wyman's * <a target="_blank" * href="http://bobwyman.pubsub.com/main/2005/05/mary_hodder_poi.html">Prospective Search</a>, * Jim Gray's * <a target="_blank" href="http://www.acmqueue.org/modules.php?name=Content&pa=showpage&pid=293&page=4"> * A Call to Arms - Custom subscriptions</a>, and Tim Bray's * <a target="_blank" * href="http://www.tbray.org/ongoing/When/200x/2003/07/30/OnSearchTOC">On Search, the Series</a>. * * * <h4>Example Usage</h4> * * <pre class="prettyprint"> * Analyzer analyzer = new SimpleAnalyzer(version); * MemoryIndex index = new MemoryIndex(); * index.addField("content", "Readings about Salmons and other select Alaska fishing Manuals", analyzer); * index.addField("author", "Tales of James", analyzer); * QueryParser parser = new QueryParser(version, "content", analyzer); * float score = index.search(parser.parse("+author:james +salmon~ +fish* manual~")); * if (score > 0.0f) { * System.out.println("it's a match"); * } else { * System.out.println("no match found"); * } * System.out.println("indexData=" + index.toString()); * </pre> * * * <h4>Example XQuery Usage</h4> * * <pre class="prettyprint"> * (: An XQuery that finds all books authored by James that have something to do with "salmon fishing manuals", sorted by relevance :) * declare namespace lucene = "java:nux.xom.pool.FullTextUtil"; * declare variable $query := "+salmon~ +fish* manual~"; (: any arbitrary Lucene query can go here :) * * for $book in /books/book[author="James" and lucene:match(abstract, $query) > 0.0] * let $score := lucene:match($book/abstract, $query) * order by $score descending * return $book * </pre> * * * <h4>No thread safety guarantees</h4> * * An instance can be queried multiple times with the same or different queries, * but an instance is not thread-safe. If desired use idioms such as: * <pre class="prettyprint"> * MemoryIndex index = ... * synchronized (index) { * // read and/or write index (i.e. add fields and/or query) * } * </pre> * * * <h4>Performance Notes</h4> * * Internally there's a new data structure geared towards efficient indexing * and searching, plus the necessary support code to seamlessly plug into the Lucene * framework. * <p> * This class performs very well for very small texts (e.g. 10 chars) * as well as for large texts (e.g. 10 MB) and everything in between. * Typically, it is about 10-100 times faster than <code>RAMDirectory</code>. * Note that <code>RAMDirectory</code> has particularly * large efficiency overheads for small to medium sized texts, both in time and space. * Indexing a field with N tokens takes O(N) in the best case, and O(N logN) in the worst * case. Memory consumption is probably larger than for <code>RAMDirectory</code>. * <p> * Example throughput of many simple term queries over a single MemoryIndex: * ~500000 queries/sec on a MacBook Pro, jdk 1.5.0_06, server VM. * As always, your mileage may vary. * <p> * If you're curious about * the whereabouts of bottlenecks, run java 1.5 with the non-perturbing '-server * -agentlib:hprof=cpu=samples,depth=10' flags, then study the trace log and * correlate its hotspot trailer with its call stack headers (see <a * target="_blank" * href="http://java.sun.com/developer/technicalArticles/Programming/HPROF.html"> * hprof tracing </a>). * */ public class MemoryIndex { /** info for each field: Map<String fieldName, Info field> */ private final HashMap<String,Info> fields = new HashMap<String,Info>(); /** fields sorted ascending by fieldName; lazily computed on demand */ private transient Map.Entry<String,Info>[] sortedFields; /** pos: positions[3*i], startOffset: positions[3*i +1], endOffset: positions[3*i +2] */ private final int stride; /** Could be made configurable; */ private static final float docBoost = 1.0f; private static final boolean DEBUG = false; private HashMap<String,FieldInfo> fieldInfos = new HashMap<String,FieldInfo>(); /** * Sorts term entries into ascending order; also works for * Arrays.binarySearch() and Arrays.sort() */ private static final Comparator<Object> termComparator = new Comparator<Object>() { @SuppressWarnings({"unchecked","rawtypes"}) public int compare(Object o1, Object o2) { if (o1 instanceof Map.Entry<?,?>) o1 = ((Map.Entry<?,?>) o1).getKey(); if (o2 instanceof Map.Entry<?,?>) o2 = ((Map.Entry<?,?>) o2).getKey(); if (o1 == o2) return 0; return ((Comparable) o1).compareTo((Comparable) o2); } }; /** * Constructs an empty instance. */ public MemoryIndex() { this(false); } /** * Constructs an empty instance that can optionally store the start and end * character offset of each token term in the text. This can be useful for * highlighting of hit locations with the Lucene highlighter package. * Protected until the highlighter package matures, so that this can actually * be meaningfully integrated. * * @param storeOffsets * whether or not to store the start and end character offset of * each token term in the text */ protected MemoryIndex(boolean storeOffsets) { this.stride = storeOffsets ? 3 : 1; } /** * Convenience method; Tokenizes the given field text and adds the resulting * terms to the index; Equivalent to adding an indexed non-keyword Lucene * {@link org.apache.lucene.document.Field} that is tokenized, not stored, * termVectorStored with positions (or termVectorStored with positions and offsets), * * @param fieldName * a name to be associated with the text * @param text * the text to tokenize and index. * @param analyzer * the analyzer to use for tokenization */ public void addField(String fieldName, String text, Analyzer analyzer) { if (fieldName == null) throw new IllegalArgumentException("fieldName must not be null"); if (text == null) throw new IllegalArgumentException("text must not be null"); if (analyzer == null) throw new IllegalArgumentException("analyzer must not be null"); TokenStream stream; try { stream = analyzer.tokenStream(fieldName, new StringReader(text)); } catch (IOException ex) { throw new RuntimeException(ex); } addField(fieldName, stream); } /** * Convenience method; Creates and returns a token stream that generates a * token for each keyword in the given collection, "as is", without any * transforming text analysis. The resulting token stream can be fed into * {@link #addField(String, TokenStream)}, perhaps wrapped into another * {@link org.apache.lucene.analysis.TokenFilter}, as desired. * * @param keywords * the keywords to generate tokens for * @return the corresponding token stream */ public <T> TokenStream keywordTokenStream(final Collection<T> keywords) { // TODO: deprecate & move this method into AnalyzerUtil? if (keywords == null) throw new IllegalArgumentException("keywords must not be null"); return new TokenStream() { private Iterator<T> iter = keywords.iterator(); private int start = 0; private final CharTermAttribute termAtt = addAttribute(CharTermAttribute.class); private final OffsetAttribute offsetAtt = addAttribute(OffsetAttribute.class); @Override public boolean incrementToken() { if (!iter.hasNext()) return false; T obj = iter.next(); if (obj == null) throw new IllegalArgumentException("keyword must not be null"); String term = obj.toString(); clearAttributes(); termAtt.setEmpty().append(term); offsetAtt.setOffset(start, start+termAtt.length()); start += term.length() + 1; // separate words by 1 (blank) character return true; } }; } /** * Equivalent to <code>addField(fieldName, stream, 1.0f)</code>. * * @param fieldName * a name to be associated with the text * @param stream * the token stream to retrieve tokens from */ public void addField(String fieldName, TokenStream stream) { addField(fieldName, stream, 1.0f); } /** * Iterates over the given token stream and adds the resulting terms to the index; * Equivalent to adding a tokenized, indexed, termVectorStored, unstored, * Lucene {@link org.apache.lucene.document.Field}. * Finally closes the token stream. Note that untokenized keywords can be added with this method via * {@link #keywordTokenStream(Collection)}, the Lucene <code>KeywordTokenizer</code> or similar utilities. * * @param fieldName * a name to be associated with the text * @param stream * the token stream to retrieve tokens from. * @param boost * the boost factor for hits for this field * @see org.apache.lucene.document.Field#setBoost(float) */ public void addField(String fieldName, TokenStream stream, float boost) { try { if (fieldName == null) throw new IllegalArgumentException("fieldName must not be null"); if (stream == null) throw new IllegalArgumentException("token stream must not be null"); if (boost <= 0.0f) throw new IllegalArgumentException("boost factor must be greater than 0.0"); if (fields.get(fieldName) != null) throw new IllegalArgumentException("field must not be added more than once"); HashMap<BytesRef,ArrayIntList> terms = new HashMap<BytesRef,ArrayIntList>(); int numTokens = 0; int numOverlapTokens = 0; int pos = -1; if (!fieldInfos.containsKey(fieldName)) { fieldInfos.put(fieldName, new FieldInfo(fieldName, true, fieldInfos.size(), false, false, false, IndexOptions.DOCS_AND_FREQS_AND_POSITIONS, null, null, null)); } TermToBytesRefAttribute termAtt = stream.getAttribute(TermToBytesRefAttribute.class); PositionIncrementAttribute posIncrAttribute = stream.addAttribute(PositionIncrementAttribute.class); OffsetAttribute offsetAtt = stream.addAttribute(OffsetAttribute.class); BytesRef ref = termAtt.getBytesRef(); stream.reset(); while (stream.incrementToken()) { termAtt.fillBytesRef(); if (ref.length == 0) continue; // nothing to do // if (DEBUG) System.err.println("token='" + term + "'"); numTokens++; final int posIncr = posIncrAttribute.getPositionIncrement(); if (posIncr == 0) numOverlapTokens++; pos += posIncr; ArrayIntList positions = terms.get(ref); if (positions == null) { // term not seen before positions = new ArrayIntList(stride); terms.put(BytesRef.deepCopyOf(ref), positions); } if (stride == 1) { positions.add(pos); } else { positions.add(pos, offsetAtt.startOffset(), offsetAtt.endOffset()); } } stream.end(); // ensure infos.numTokens > 0 invariant; needed for correct operation of terms() if (numTokens > 0) { boost = boost * docBoost; // see DocumentWriter.addDocument(...) fields.put(fieldName, new Info(terms, numTokens, numOverlapTokens, boost)); sortedFields = null; // invalidate sorted view, if any } } catch (IOException e) { // can never happen throw new RuntimeException(e); } finally { try { if (stream != null) stream.close(); } catch (IOException e2) { throw new RuntimeException(e2); } } } /** * Creates and returns a searcher that can be used to execute arbitrary * Lucene queries and to collect the resulting query results as hits. * * @return a searcher */ public IndexSearcher createSearcher() { MemoryIndexReader reader = new MemoryIndexReader(); IndexSearcher searcher = new IndexSearcher(reader); // ensures no auto-close !! reader.setSearcher(searcher); // to later get hold of searcher.getSimilarity() return searcher; } /** * Convenience method that efficiently returns the relevance score by * matching this index against the given Lucene query expression. * * @param query * an arbitrary Lucene query to run against this index * @return the relevance score of the matchmaking; A number in the range * [0.0 .. 1.0], with 0.0 indicating no match. The higher the number * the better the match. * */ public float search(Query query) { if (query == null) throw new IllegalArgumentException("query must not be null"); IndexSearcher searcher = createSearcher(); try { final float[] scores = new float[1]; // inits to 0.0f (no match) searcher.search(query, new Collector() { private Scorer scorer; @Override public void collect(int doc) throws IOException { scores[0] = scorer.score(); } @Override public void setScorer(Scorer scorer) { this.scorer = scorer; } @Override public boolean acceptsDocsOutOfOrder() { return true; } @Override public void setNextReader(AtomicReaderContext context) { } }); float score = scores[0]; return score; } catch (IOException e) { // can never happen (RAMDirectory) throw new RuntimeException(e); } finally { // searcher.close(); /* * Note that it is harmless and important for good performance to * NOT close the index reader!!! This avoids all sorts of * unnecessary baggage and locking in the Lucene IndexReader * superclass, all of which is completely unnecessary for this main * memory index data structure without thread-safety claims. * * Wishing IndexReader would be an interface... * * Actually with the new tight createSearcher() API auto-closing is now * made impossible, hence searcher.close() would be harmless and also * would not degrade performance... */ } } /** * Returns a reasonable approximation of the main memory [bytes] consumed by * this instance. Useful for smart memory sensititive caches/pools. * @return the main memory consumption */ public long getMemorySize() { return RamUsageEstimator.sizeOf(this); } private int numPositions(ArrayIntList positions) { return positions.size() / stride; } /** sorts into ascending order (on demand), reusing memory along the way */ private void sortFields() { if (sortedFields == null) sortedFields = sort(fields); } /** returns a view of the given map's entries, sorted ascending by key */ private static <K,V> Map.Entry<K,V>[] sort(HashMap<K,V> map) { int size = map.size(); @SuppressWarnings("unchecked") Map.Entry<K,V>[] entries = new Map.Entry[size]; Iterator<Map.Entry<K,V>> iter = map.entrySet().iterator(); for (int i=0; i < size; i++) { entries[i] = iter.next(); } if (size > 1) ArrayUtil.quickSort(entries, termComparator); return entries; } /** * Returns a String representation of the index data for debugging purposes. * * @return the string representation */ @Override public String toString() { StringBuilder result = new StringBuilder(256); sortFields(); int sumPositions = 0; int sumTerms = 0; for (int i=0; i < sortedFields.length; i++) { Map.Entry<String,Info> entry = sortedFields[i]; String fieldName = entry.getKey(); Info info = entry.getValue(); info.sortTerms(); result.append(fieldName + ":\n"); int numPositions = 0; for (int j=0; j < info.sortedTerms.length; j++) { Map.Entry<BytesRef,ArrayIntList> e = info.sortedTerms[j]; BytesRef term = e.getKey(); ArrayIntList positions = e.getValue(); result.append("\t'" + term + "':" + numPositions(positions) + ":"); result.append(positions.toString(stride)); // ignore offsets result.append("\n"); numPositions += numPositions(positions); } result.append("\tterms=" + info.sortedTerms.length); result.append(", positions=" + numPositions); result.append(", memory=" + RamUsageEstimator.humanReadableUnits(RamUsageEstimator.sizeOf(info))); result.append("\n"); sumPositions += numPositions; sumTerms += info.sortedTerms.length; } result.append("\nfields=" + sortedFields.length); result.append(", terms=" + sumTerms); result.append(", positions=" + sumPositions); result.append(", memory=" + RamUsageEstimator.humanReadableUnits(getMemorySize())); return result.toString(); } /** * Index data structure for a field; Contains the tokenized term texts and * their positions. */ private static final class Info { /** * Term strings and their positions for this field: Map <String * termText, ArrayIntList positions> */ private final HashMap<BytesRef,ArrayIntList> terms; /** Terms sorted ascending by term text; computed on demand */ private transient Map.Entry<BytesRef,ArrayIntList>[] sortedTerms; /** Number of added tokens for this field */ private final int numTokens; /** Number of overlapping tokens for this field */ private final int numOverlapTokens; /** Boost factor for hits for this field */ private final float boost; private final long sumTotalTermFreq; public Info(HashMap<BytesRef,ArrayIntList> terms, int numTokens, int numOverlapTokens, float boost) { this.terms = terms; this.numTokens = numTokens; this.numOverlapTokens = numOverlapTokens; this.boost = boost; long sum = 0; for(Map.Entry<BytesRef,ArrayIntList> ent : terms.entrySet()) { sum += ent.getValue().size(); } sumTotalTermFreq = sum; } public long getSumTotalTermFreq() { return sumTotalTermFreq; } /** * Sorts hashed terms into ascending order, reusing memory along the * way. Note that sorting is lazily delayed until required (often it's * not required at all). If a sorted view is required then hashing + * sort + binary search is still faster and smaller than TreeMap usage * (which would be an alternative and somewhat more elegant approach, * apart from more sophisticated Tries / prefix trees). */ public void sortTerms() { if (sortedTerms == null) sortedTerms = sort(terms); } public float getBoost() { return boost; } } /////////////////////////////////////////////////////////////////////////////// // Nested classes: /////////////////////////////////////////////////////////////////////////////// /** * Efficient resizable auto-expanding list holding <code>int</code> elements; * implemented with arrays. */ private static final class ArrayIntList { private int[] elements; private int size = 0; public ArrayIntList(int initialCapacity) { elements = new int[initialCapacity]; } public void add(int elem) { if (size == elements.length) ensureCapacity(size + 1); elements[size++] = elem; } public void add(int pos, int start, int end) { if (size + 3 > elements.length) ensureCapacity(size + 3); elements[size] = pos; elements[size+1] = start; elements[size+2] = end; size += 3; } public int get(int index) { if (index >= size) throwIndex(index); return elements[index]; } public int size() { return size; } private void ensureCapacity(int minCapacity) { int newCapacity = Math.max(minCapacity, (elements.length * 3) / 2 + 1); int[] newElements = new int[newCapacity]; System.arraycopy(elements, 0, newElements, 0, size); elements = newElements; } private void throwIndex(int index) { throw new IndexOutOfBoundsException("index: " + index + ", size: " + size); } /** returns the first few positions (without offsets); debug only */ public String toString(int stride) { int s = size() / stride; int len = Math.min(10, s); // avoid printing huge lists StringBuilder buf = new StringBuilder(4*len); buf.append("["); for (int i = 0; i < len; i++) { buf.append(get(i*stride)); if (i < len-1) buf.append(", "); } if (len != s) buf.append(", ..."); // and some more... buf.append("]"); return buf.toString(); } } /////////////////////////////////////////////////////////////////////////////// // Nested classes: /////////////////////////////////////////////////////////////////////////////// /** * Search support for Lucene framework integration; implements all methods * required by the Lucene IndexReader contracts. */ private final class MemoryIndexReader extends AtomicReader { private IndexSearcher searcher; // needed to find searcher.getSimilarity() private MemoryIndexReader() { super(); // avoid as much superclass baggage as possible } private Info getInfo(String fieldName) { return fields.get(fieldName); } private Info getInfo(int pos) { return sortedFields[pos].getValue(); } @Override public Bits getLiveDocs() { return null; } @Override public FieldInfos getFieldInfos() { return new FieldInfos(fieldInfos.values().toArray(new FieldInfo[fieldInfos.size()])); } private class MemoryFields extends Fields { @Override public Iterator<String> iterator() { return new Iterator<String>() { int upto = -1; @Override public String next() { upto++; if (upto >= sortedFields.length) { throw new NoSuchElementException(); } return sortedFields[upto].getKey(); } @Override public boolean hasNext() { return upto+1 < sortedFields.length; } @Override public void remove() { throw new UnsupportedOperationException(); } }; } @Override public Terms terms(final String field) { int i = Arrays.binarySearch(sortedFields, field, termComparator); if (i < 0) { return null; } else { final Info info = getInfo(i); info.sortTerms(); return new Terms() { @Override public TermsEnum iterator(TermsEnum reuse) { return new MemoryTermsEnum(info); } @Override public Comparator<BytesRef> getComparator() { return BytesRef.getUTF8SortedAsUnicodeComparator(); } @Override public long size() { return info.sortedTerms.length; } @Override public long getSumTotalTermFreq() { return info.getSumTotalTermFreq(); } @Override public long getSumDocFreq() { // each term has df=1 return info.sortedTerms.length; } @Override public int getDocCount() { return info.sortedTerms.length > 0 ? 1 : 0; } @Override public boolean hasOffsets() { return stride == 3; } @Override public boolean hasPositions() { return true; } @Override public boolean hasPayloads() { return false; } }; } } @Override public int size() { return sortedFields.length; } } @Override public Fields fields() { sortFields(); return new MemoryFields(); } private class MemoryTermsEnum extends TermsEnum { private final Info info; private final BytesRef br = new BytesRef(); int termUpto = -1; public MemoryTermsEnum(Info info) { this.info = info; info.sortTerms(); } @Override public boolean seekExact(BytesRef text, boolean useCache) { termUpto = Arrays.binarySearch(info.sortedTerms, text, termComparator); if (termUpto >= 0) { br.copyBytes(info.sortedTerms[termUpto].getKey()); return true; } else { return false; } } @Override public SeekStatus seekCeil(BytesRef text, boolean useCache) { termUpto = Arrays.binarySearch(info.sortedTerms, text, termComparator); if (termUpto < 0) { // not found; choose successor termUpto = -termUpto -1; if (termUpto >= info.sortedTerms.length) { return SeekStatus.END; } else { br.copyBytes(info.sortedTerms[termUpto].getKey()); return SeekStatus.NOT_FOUND; } } else { br.copyBytes(info.sortedTerms[termUpto].getKey()); return SeekStatus.FOUND; } } @Override public void seekExact(long ord) { assert ord < info.sortedTerms.length; termUpto = (int) ord; } @Override public BytesRef next() { termUpto++; if (termUpto >= info.sortedTerms.length) { return null; } else { br.copyBytes(info.sortedTerms[termUpto].getKey()); return br; } } @Override public BytesRef term() { return br; } @Override public long ord() { return termUpto; } @Override public int docFreq() { return 1; } @Override public long totalTermFreq() { return info.sortedTerms[termUpto].getValue().size(); } @Override public DocsEnum docs(Bits liveDocs, DocsEnum reuse, int flags) { if (reuse == null || !(reuse instanceof MemoryDocsEnum)) { reuse = new MemoryDocsEnum(); } return ((MemoryDocsEnum) reuse).reset(liveDocs, info.sortedTerms[termUpto].getValue()); } @Override public DocsAndPositionsEnum docsAndPositions(Bits liveDocs, DocsAndPositionsEnum reuse, int flags) { if (reuse == null || !(reuse instanceof MemoryDocsAndPositionsEnum)) { reuse = new MemoryDocsAndPositionsEnum(); } return ((MemoryDocsAndPositionsEnum) reuse).reset(liveDocs, info.sortedTerms[termUpto].getValue()); } @Override public Comparator<BytesRef> getComparator() { return BytesRef.getUTF8SortedAsUnicodeComparator(); } @Override public void seekExact(BytesRef term, TermState state) throws IOException { assert state != null; this.seekExact(((OrdTermState)state).ord); } @Override public TermState termState() throws IOException { OrdTermState ts = new OrdTermState(); ts.ord = termUpto; return ts; } } private class MemoryDocsEnum extends DocsEnum { private ArrayIntList positions; private boolean hasNext; private Bits liveDocs; private int doc = -1; public DocsEnum reset(Bits liveDocs, ArrayIntList positions) { this.liveDocs = liveDocs; this.positions = positions; hasNext = true; doc = -1; return this; } @Override public int docID() { return doc; } @Override public int nextDoc() { if (hasNext && (liveDocs == null || liveDocs.get(0))) { hasNext = false; return doc = 0; } else { return doc = NO_MORE_DOCS; } } @Override public int advance(int target) { return nextDoc(); } @Override public int freq() throws IOException { return positions.size(); } } private class MemoryDocsAndPositionsEnum extends DocsAndPositionsEnum { private ArrayIntList positions; private int posUpto; private boolean hasNext; private Bits liveDocs; private int doc = -1; public DocsAndPositionsEnum reset(Bits liveDocs, ArrayIntList positions) { this.liveDocs = liveDocs; this.positions = positions; posUpto = 0; hasNext = true; doc = -1; return this; } @Override public int docID() { return doc; } @Override public int nextDoc() { if (hasNext && (liveDocs == null || liveDocs.get(0))) { hasNext = false; return doc = 0; } else { return doc = NO_MORE_DOCS; } } @Override public int advance(int target) { return nextDoc(); } @Override public int freq() throws IOException { return positions.size() / stride; } @Override public int nextPosition() { return positions.get(posUpto++ * stride); } @Override public int startOffset() { return stride == 1 ? -1 : positions.get((posUpto - 1) * stride + 1); } @Override public int endOffset() { return stride == 1 ? -1 : positions.get((posUpto - 1) * stride + 2); } @Override public BytesRef getPayload() { return null; } } @Override public Fields getTermVectors(int docID) { if (docID == 0) { return fields(); } else { return null; } } private Similarity getSimilarity() { if (searcher != null) return searcher.getSimilarity(); return IndexSearcher.getDefaultSimilarity(); } private void setSearcher(IndexSearcher searcher) { this.searcher = searcher; } @Override public int numDocs() { if (DEBUG) System.err.println("MemoryIndexReader.numDocs"); return fields.size() > 0 ? 1 : 0; } @Override public int maxDoc() { if (DEBUG) System.err.println("MemoryIndexReader.maxDoc"); return 1; } @Override public void document(int docID, StoredFieldVisitor visitor) { if (DEBUG) System.err.println("MemoryIndexReader.document"); // no-op: there are no stored fields } @Override public boolean hasDeletions() { if (DEBUG) System.err.println("MemoryIndexReader.hasDeletions"); return false; } @Override protected void doClose() { if (DEBUG) System.err.println("MemoryIndexReader.doClose"); } @Override public DocValues docValues(String field) { return null; } /** performance hack: cache norms to avoid repeated expensive calculations */ private DocValues cachedNormValues; private String cachedFieldName; private Similarity cachedSimilarity; @Override public DocValues normValues(String field) { DocValues norms = cachedNormValues; Similarity sim = getSimilarity(); if (!field.equals(cachedFieldName) || sim != cachedSimilarity) { // not cached? Info info = getInfo(field); int numTokens = info != null ? info.numTokens : 0; int numOverlapTokens = info != null ? info.numOverlapTokens : 0; float boost = info != null ? info.getBoost() : 1.0f; FieldInvertState invertState = new FieldInvertState(field, 0, numTokens, numOverlapTokens, 0, boost); Norm norm = new Norm(); sim.computeNorm(invertState, norm); SingleValueSource singleByteSource = new SingleValueSource(norm); norms = new MemoryIndexNormDocValues(singleByteSource); // cache it for future reuse cachedNormValues = norms; cachedFieldName = field; cachedSimilarity = sim; if (DEBUG) System.err.println("MemoryIndexReader.norms: " + field + ":" + norm + ":" + numTokens); } return norms; } } }