package org.apache.lucene.util.collections; import java.util.Arrays; import java.util.Iterator; /* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /** * An Array-based hashtable which maps, similar to Java's HashMap, only * performance tests showed it performs better. * <p> * The hashtable is constructed with a given capacity, or 16 as a default. In * case there's not enough room for new pairs, the hashtable grows. Capacity is * adjusted to a power of 2, and there are 2 * capacity entries for the hash. * The pre allocated arrays (for keys, values) are at length of capacity + 1, * where index 0 is used as 'Ground' or 'NULL'. * <p> * The arrays are allocated ahead of hash operations, and form an 'empty space' * list, to which the <key,value> pair is allocated. * * @lucene.experimental */ public class ArrayHashMap<K,V> implements Iterable<V> { /** Implements an IntIterator which iterates over all the allocated indexes. */ private final class IndexIterator implements IntIterator { /** * The last used baseHashIndex. Needed for "jumping" from one hash entry * to another. */ private int baseHashIndex = 0; /** The next not-yet-visited index. */ private int index = 0; /** Index of the last visited pair. Used in {@link #remove()}. */ private int lastIndex = 0; /** * Create the Iterator, make <code>index</code> point to the "first" * index which is not empty. If such does not exist (eg. the map is * empty) it would be zero. */ public IndexIterator() { for (baseHashIndex = 0; baseHashIndex < baseHash.length; ++baseHashIndex) { index = baseHash[baseHashIndex]; if (index != 0) { break; } } } public boolean hasNext() { return index != 0; } public int next() { // Save the last index visited lastIndex = index; // next the index index = next[index]; // if the next index points to the 'Ground' it means we're done with // the current hash entry and we need to jump to the next one. This // is done until all the hash entries had been visited. while (index == 0 && ++baseHashIndex < baseHash.length) { index = baseHash[baseHashIndex]; } return lastIndex; } @SuppressWarnings("unchecked") public void remove() { ArrayHashMap.this.remove((K) keys[lastIndex]); } } /** Implements an Iterator, used for iteration over the map's keys. */ private final class KeyIterator implements Iterator<K> { private IntIterator iterator = new IndexIterator(); KeyIterator() { } public boolean hasNext() { return iterator.hasNext(); } @SuppressWarnings("unchecked") public K next() { return (K) keys[iterator.next()]; } public void remove() { iterator.remove(); } } /** Implements an Iterator, used for iteration over the map's values. */ private final class ValueIterator implements Iterator<V> { private IntIterator iterator = new IndexIterator(); ValueIterator() { } public boolean hasNext() { return iterator.hasNext(); } @SuppressWarnings("unchecked") public V next() { return (V) values[iterator.next()]; } public void remove() { iterator.remove(); } } /** Default capacity - in case no capacity was specified in the constructor */ private static final int DEFAULT_CAPACITY = 16; /** * Holds the base hash entries. if the capacity is 2^N, than the base hash * holds 2^(N+1). */ int[] baseHash; /** * The current capacity of the map. Always 2^N and never less than 16. We * never use the zero index. It is needed to improve performance and is also * used as "ground". */ private int capacity; /** * All objects are being allocated at map creation. Those objects are "free" * or empty. Whenever a new pair comes along, a pair is being "allocated" or * taken from the free-linked list. as this is just a free list. */ private int firstEmpty; /** hashFactor is always (2^(N+1)) - 1. Used for faster hashing. */ private int hashFactor; /** Holds the unique keys. */ Object[] keys; /** * In case of collisions, we implement a double linked list of the colliding * hash's with the following next[] and prev[]. Those are also used to store * the "empty" list. */ int[] next; private int prev; /** Number of currently stored objects in the map. */ private int size; /** Holds the values. */ Object[] values; /** Constructs a map with default capacity. */ public ArrayHashMap() { this(DEFAULT_CAPACITY); } /** * Constructs a map with given capacity. Capacity is adjusted to a native * power of 2, with minimum of 16. * * @param capacity minimum capacity for the map. */ public ArrayHashMap(int capacity) { this.capacity = 16; while (this.capacity < capacity) { // Multiply by 2 as long as we're still under the requested capacity this.capacity <<= 1; } // As mentioned, we use the first index (0) as 'Ground', so we need the // length of the arrays to be one more than the capacity int arrayLength = this.capacity + 1; values = new Object[arrayLength]; keys = new Object[arrayLength]; next = new int[arrayLength]; // Hash entries are twice as big as the capacity. int baseHashSize = this.capacity << 1; baseHash = new int[baseHashSize]; // The has factor is 2^M - 1 which is used as an "AND" hashing operator. // {@link #calcBaseHash()} hashFactor = baseHashSize - 1; size = 0; clear(); } /** * Adds a pair to the map. Takes the first empty position from the * empty-linked-list's head - {@link #firstEmpty}. New pairs are always * inserted to baseHash, and are followed by the old colliding pair. */ private void prvt_put(K key, V value) { // Hash entry to which the new pair would be inserted int hashIndex = calcBaseHashIndex(key); // 'Allocating' a pair from the "Empty" list. int objectIndex = firstEmpty; // Setting data firstEmpty = next[firstEmpty]; values[objectIndex] = value; keys[objectIndex] = key; // Inserting the new pair as the first node in the specific hash entry next[objectIndex] = baseHash[hashIndex]; baseHash[hashIndex] = objectIndex; // Announcing a new pair was added! ++size; } /** Calculating the baseHash index using the internal internal <code>hashFactor</code>. */ protected int calcBaseHashIndex(K key) { return key.hashCode() & hashFactor; } /** Empties the map. Generates the "Empty" space list for later allocation. */ public void clear() { // Clears the hash entries Arrays.fill(baseHash, 0); // Set size to zero size = 0; // Mark all array entries as empty. This is done with // <code>firstEmpty</code> pointing to the first valid index (1 as 0 is // used as 'Ground'). firstEmpty = 1; // And setting all the <code>next[i]</code> to point at // <code>i+1</code>. for (int i = 1; i < capacity;) { next[i] = ++i; } // Surly, the last one should point to the 'Ground'. next[capacity] = 0; } /** Returns true iff the key exists in the map. */ public boolean containsKey(K key) { return find(key) != 0; } /** Returns true iff the object exists in the map. */ public boolean containsValue(Object o) { for (Iterator<V> iterator = iterator(); iterator.hasNext();) { V object = iterator.next(); if (object.equals(o)) { return true; } } return false; } /** Returns the index of the given key, or zero if the key wasn't found. */ protected int find(K key) { // Calculate the hash entry. int baseHashIndex = calcBaseHashIndex(key); // Start from the hash entry. int localIndex = baseHash[baseHashIndex]; // while the index does not point to the 'Ground' while (localIndex != 0) { // returns the index found in case of of a matching key. if (keys[localIndex].equals(key)) { return localIndex; } // next the local index localIndex = next[localIndex]; } // If we got this far, it could only mean we did not find the key we // were asked for. return 'Ground' index. return 0; } /** * Finds the actual index of a given key with it's baseHashIndex. Some methods * use the baseHashIndex. If those call {@link #find} there's no need to * re-calculate that hash. * * @return the index of the given key, or 0 if the key wasn't found. */ private int findForRemove(K key, int baseHashIndex) { // Start from the hash entry. prev = 0; int index = baseHash[baseHashIndex]; // while the index does not point to the 'Ground' while (index != 0) { // returns the index found in case of of a matching key. if (keys[index].equals(key)) { return index; } // next the local index prev = index; index = next[index]; } // If we got thus far, it could only mean we did not find the key we // were asked for. return 'Ground' index. return prev = 0; } /** Returns the object mapped with the given key, or null if the key wasn't found. */ @SuppressWarnings("unchecked") public V get(K key) { return (V) values[find(key)]; } /** * Allocates a new map of double the capacity, and fast-insert the old * key-value pairs. */ @SuppressWarnings("unchecked") protected void grow() { ArrayHashMap<K,V> newmap = new ArrayHashMap<K,V>(capacity * 2); // Iterates fast over the collection. Any valid pair is put into the new // map without checking for duplicates or if there's enough space for // it. for (IndexIterator iterator = new IndexIterator(); iterator.hasNext();) { int index = iterator.next(); newmap.prvt_put((K) keys[index], (V) values[index]); } // Copy that's data into this. capacity = newmap.capacity; size = newmap.size; firstEmpty = newmap.firstEmpty; values = newmap.values; keys = newmap.keys; next = newmap.next; baseHash = newmap.baseHash; hashFactor = newmap.hashFactor; } /** Returns true iff the map is empty. */ public boolean isEmpty() { return size == 0; } /** Returns an iterator on the mapped objects. */ public Iterator<V> iterator() { return new ValueIterator(); } /** Returns an iterator on the map keys. */ public Iterator<K> keyIterator() { return new KeyIterator(); } /** Prints the baseHash array, used for debugging purposes. */ @SuppressWarnings("unused") private String getBaseHashAsString() { return Arrays.toString(this.baseHash); } /** * Inserts the <key,value> pair into the map. If the key already exists, * this method updates the mapped value to the given one, returning the old * mapped value. * * @return the old mapped value, or null if the key didn't exist. */ @SuppressWarnings("unchecked") public V put(K key, V e) { // Does key exists? int index = find(key); // Yes! if (index != 0) { // Set new data and exit. V old = (V) values[index]; values[index] = e; return old; } // Is there enough room for a new pair? if (size == capacity) { // No? Than grow up! grow(); } // Now that everything is set, the pair can be just put inside with no // worries. prvt_put(key, e); return null; } /** * Removes a <key,value> pair from the map and returns the mapped value, * or null if the none existed. * * @param key used to find the value to remove * @return the removed value or null if none existed. */ @SuppressWarnings("unchecked") public V remove(K key) { int baseHashIndex = calcBaseHashIndex(key); int index = findForRemove(key, baseHashIndex); if (index != 0) { // If it is the first in the collision list, we should promote its // next colliding element. if (prev == 0) { baseHash[baseHashIndex] = next[index]; } next[prev] = next[index]; next[index] = firstEmpty; firstEmpty = index; --size; return (V) values[index]; } return null; } /** Returns number of pairs currently in the map. */ public int size() { return this.size; } /** * Translates the mapped pairs' values into an array of Objects * * @return an object array of all the values currently in the map. */ public Object[] toArray() { int j = -1; Object[] array = new Object[size]; // Iterates over the values, adding them to the array. for (Iterator<V> iterator = iterator(); iterator.hasNext();) { array[++j] = iterator.next(); } return array; } /** * Translates the mapped pairs' values into an array of V * * @param a the array into which the elements of the list are to be stored, if * it is big enough; otherwise, use as much space as it can. * @return an array containing the elements of the list */ public V[] toArray(V[] a) { int j = 0; // Iterates over the values, adding them to the array. for (Iterator<V> iterator = iterator(); j < a.length && iterator.hasNext(); ++j) { a[j] = iterator.next(); } if (j < a.length) { a[j] = null; } return a; } @Override public String toString() { StringBuffer sb = new StringBuffer(); sb.append('{'); Iterator<K> keyIterator = keyIterator(); while (keyIterator.hasNext()) { K key = keyIterator.next(); sb.append(key); sb.append('='); sb.append(get(key)); if (keyIterator.hasNext()) { sb.append(','); sb.append(' '); } } sb.append('}'); return sb.toString(); } @Override public int hashCode() { return getClass().hashCode() ^ size(); } @SuppressWarnings("unchecked") @Override public boolean equals(Object o) { ArrayHashMap<K, V> that = (ArrayHashMap<K,V>)o; if (that.size() != this.size()) { return false; } Iterator<K> it = keyIterator(); while (it.hasNext()) { K key = it.next(); V v1 = this.get(key); V v2 = that.get(key); if ((v1 == null && v2 != null) || (v1 != null && v2 == null) || (!v1.equals(v2))) { return false; } } return true; } }