/* * Copyright (C) 2014 The Guava Authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.google_voltpatches.common.graph; import static com.google_voltpatches.common.base.Preconditions.checkArgument; import static com.google_voltpatches.common.graph.GraphConstants.NODE_NOT_IN_GRAPH; import com.google_voltpatches.common.annotations.Beta; import com.google_voltpatches.common.base.Objects; import com.google_voltpatches.common.collect.Iterables; import com.google_voltpatches.common.collect.Maps; import com.google_voltpatches.errorprone.annotations.CanIgnoreReturnValue; import java.util.ArrayDeque; import java.util.Collections; import java.util.HashSet; import java.util.LinkedHashSet; import java.util.Map; import java.util.Queue; import java.util.Set; import javax.annotation_voltpatches.Nullable; /** * Static utility methods for {@link Graph} and {@link Network} instances. * * @author James Sexton * @author Joshua O'Madadhain * @since 20.0 */ @Beta public final class Graphs { private Graphs() {} // Graph query methods /** * Returns true if {@code graph} has at least one cycle. A cycle is defined as a non-empty subset * of edges in a graph arranged to form a path (a sequence of adjacent outgoing edges) starting * and ending with the same node. * * <p>This method will detect any non-empty cycle, including self-loops (a cycle of length 1). */ public static boolean hasCycle(Graph<?> graph) { int numEdges = graph.edges().size(); if (numEdges == 0) { return false; // An edge-free graph is acyclic by definition. } if (!graph.isDirected() && numEdges >= graph.nodes().size()) { return true; // Optimization for the undirected case: at least one cycle must exist. } Map<Object, NodeVisitState> visitedNodes = Maps.newHashMapWithExpectedSize(graph.nodes().size()); for (Object node : graph.nodes()) { if (subgraphHasCycle(graph, visitedNodes, node, null)) { return true; } } return false; } /** * Returns true if {@code network} has at least one cycle. A cycle is defined as a non-empty * subset of edges in a graph arranged to form a path (a sequence of adjacent outgoing edges) * starting and ending with the same node. * * <p>This method will detect any non-empty cycle, including self-loops (a cycle of length 1). */ public static boolean hasCycle(Network<?, ?> network) { // In a directed graph, parallel edges cannot introduce a cycle in an acyclic graph. // However, in an undirected graph, any parallel edge induces a cycle in the graph. if (!network.isDirected() && network.allowsParallelEdges() && network.edges().size() > network.asGraph().edges().size()) { return true; } return hasCycle(network.asGraph()); } /** * Performs a traversal of the nodes reachable from {@code node}. If we ever reach a node we've * already visited (following only outgoing edges and without reusing edges), we know there's a * cycle in the graph. */ private static boolean subgraphHasCycle( Graph<?> graph, Map<Object, NodeVisitState> visitedNodes, Object node, @Nullable Object previousNode) { NodeVisitState state = visitedNodes.get(node); if (state == NodeVisitState.COMPLETE) { return false; } if (state == NodeVisitState.PENDING) { return true; } visitedNodes.put(node, NodeVisitState.PENDING); for (Object nextNode : graph.successors(node)) { if (canTraverseWithoutReusingEdge(graph, nextNode, previousNode) && subgraphHasCycle(graph, visitedNodes, nextNode, node)) { return true; } } visitedNodes.put(node, NodeVisitState.COMPLETE); return false; } /** * Determines whether an edge has already been used during traversal. In the directed case a cycle * is always detected before reusing an edge, so no special logic is required. In the undirected * case, we must take care not to "backtrack" over an edge (i.e. going from A to B and then going * from B to A). */ private static boolean canTraverseWithoutReusingEdge( Graph<?> graph, Object nextNode, @Nullable Object previousNode) { if (graph.isDirected() || !Objects.equal(previousNode, nextNode)) { return true; } // This falls into the undirected A->B->A case. The Graph interface does not support parallel // edges, so this traversal would require reusing the undirected AB edge. return false; } /** * Returns the transitive closure of {@code graph}. The transitive closure of a graph is another * graph with an edge connecting node A to node B if node B is {@link #reachableNodes(Graph, * Object) reachable} from node A. * * <p>This is a "snapshot" based on the current topology of {@code graph}, rather than a live view * of the transitive closure of {@code graph}. In other words, the returned {@link Graph} will not * be updated after modifications to {@code graph}. */ // TODO(b/31438252): Consider potential optimizations for this algorithm. public static <N> Graph<N> transitiveClosure(Graph<N> graph) { MutableGraph<N> transitiveClosure = GraphBuilder.from(graph).allowsSelfLoops(true).build(); // Every node is, at a minimum, reachable from itself. Since the resulting transitive closure // will have no isolated nodes, we can skip adding nodes explicitly and let putEdge() do it. if (graph.isDirected()) { // Note: works for both directed and undirected graphs, but we only use in the directed case. for (N node : graph.nodes()) { for (N reachableNode : reachableNodes(graph, node)) { transitiveClosure.putEdge(node, reachableNode); } } } else { // An optimization for the undirected case: for every node B reachable from node A, // node A and node B have the same reachability set. Set<N> visitedNodes = new HashSet<N>(); for (N node : graph.nodes()) { if (!visitedNodes.contains(node)) { Set<N> reachableNodes = reachableNodes(graph, node); visitedNodes.addAll(reachableNodes); int pairwiseMatch = 1; // start at 1 to include self-loops for (N nodeU : reachableNodes) { for (N nodeV : Iterables.limit(reachableNodes, pairwiseMatch++)) { transitiveClosure.putEdge(nodeU, nodeV); } } } } } return transitiveClosure; } /** * Returns the set of nodes that are reachable from {@code node}. Node B is defined as reachable * from node A if there exists a path (a sequence of adjacent outgoing edges) starting at node A * and ending at node B. Note that a node is always reachable from itself via a zero-length path. * * <p>This is a "snapshot" based on the current topology of {@code graph}, rather than a live view * of the set of nodes reachable from {@code node}. In other words, the returned {@link Set} will * not be updated after modifications to {@code graph}. * * @throws IllegalArgumentException if {@code node} is not present in {@code graph} */ @SuppressWarnings("unchecked") // Safe because we only cast if node is an element of the graph. public static <N> Set<N> reachableNodes(Graph<N> graph, Object node) { checkArgument(graph.nodes().contains(node), NODE_NOT_IN_GRAPH, node); Set<N> visitedNodes = new LinkedHashSet<N>(); Queue<N> queuedNodes = new ArrayDeque<N>(); visitedNodes.add((N) node); queuedNodes.add((N) node); // Perform a breadth-first traversal rooted at the input node. while (!queuedNodes.isEmpty()) { N currentNode = queuedNodes.remove(); for (N successor : graph.successors(currentNode)) { if (visitedNodes.add(successor)) { queuedNodes.add(successor); } } } return Collections.unmodifiableSet(visitedNodes); } /** * Returns {@code true} if {@code graphA} and {@code graphB} have the same elements and the same * relationships between elements, as exposed via the {@link Graph} interface. * * <p>Thus, two graphs A and B are equivalent if both are null or <b>all</b> of the following are * true: * * <ul> * <li>A and B have equal {@link Graph#isDirected() directedness}. * <li>A and B have equal {@link Graph#nodes() node sets}. * <li>A and B have equal {@link Graph#edges() edge sets}. * </ul> * * <p>Graph properties besides {@link Graph#isDirected() directedness} do <b>not</b> affect * equivalence. For example, two graphs may be considered equivalent even if one allows self-loops * and the other doesn't. Additionally, the order in which nodes or edges are added to the graph, * and the order in which they are iterated over, are irrelevant. */ public static boolean equivalent(@Nullable Graph<?> graphA, @Nullable Graph<?> graphB) { if (graphA == graphB) { return true; } if (graphA == null || graphB == null) { return false; } return graphA.isDirected() == graphB.isDirected() && graphA.nodes().equals(graphB.nodes()) && graphA.edges().equals(graphB.edges()); } /** * Returns {@code true} if {@code graphA} and {@code graphB} have the same elements (including * edge values) and the same relationships between elements, as exposed via the {@link ValueGraph} * interface. * * <p>Thus, two value graphs A and B are equivalent if both are null or <b>all</b> of the * following are true: * * <ul> * <li>A and B have equal {@link Graph#isDirected() directedness}. * <li>A and B have equal {@link Graph#nodes() node sets}. * <li>A and B have equal {@link Graph#edges() edge sets}. * <li>Each edge in A has a {@link ValueGraph#edgeValue(Object, Object) value} equal to the {@link * ValueGraph#edgeValue(Object, Object) value} of the corresponding edge in B. * </ul> * * <p>Graph properties besides {@link Graph#isDirected() directedness} do <b>not</b> affect * equivalence. For example, two graphs may be considered equivalent even if one allows self-loops * and the other doesn't. Additionally, the order in which nodes or edges are added to the graph, * and the order in which they are iterated over, are irrelevant. */ public static boolean equivalent( @Nullable ValueGraph<?, ?> graphA, @Nullable ValueGraph<?, ?> graphB) { if (graphA == graphB) { return true; } if (graphA == null || graphB == null) { return false; } if (graphA.isDirected() != graphB.isDirected() || !graphA.nodes().equals(graphB.nodes()) || !graphA.edges().equals(graphB.edges())) { return false; } for (EndpointPair<?> edge : graphA.edges()) { if (!graphA .edgeValue(edge.nodeU(), edge.nodeV()) .equals(graphB.edgeValue(edge.nodeU(), edge.nodeV()))) { return false; } } return true; } /** * Returns {@code true} if {@code networkA} and {@code networkB} have the same elements and the * same relationships between elements, as exposed via the {@link Network} interface. * * <p>Thus, two networks A and B are equivalent if both are null or <b>all</b> of the following * are true: * * <ul> * <li>A and B have equal {@link Network#isDirected() directedness}. * <li>A and B have equal {@link Network#nodes() node sets}. * <li>A and B have equal {@link Network#edges() edge sets}. * <li>Each edge in A connects the same nodes in the same direction (if any) as the corresponding * edge in B. * </ul> * * <p>Network properties besides {@link Network#isDirected() directedness} do <b>not</b> affect * equivalence. For example, two networks may be considered equal even if one allows parallel * edges and the other doesn't. Additionally, the order in which nodes or edges are added to the * network, and the order in which they are iterated over, are irrelevant. */ public static boolean equivalent( @Nullable Network<?, ?> networkA, @Nullable Network<?, ?> networkB) { if (networkA == networkB) { return true; } if (networkA == null || networkB == null) { return false; } if (networkA.isDirected() != networkB.isDirected() || !networkA.nodes().equals(networkB.nodes()) || !networkA.edges().equals(networkB.edges())) { return false; } for (Object edge : networkA.edges()) { if (!networkA.incidentNodes(edge).equals(networkB.incidentNodes(edge))) { return false; } } return true; } // Graph mutation methods // Graph view methods /** * Returns a view of {@code graph} with the direction (if any) of every edge reversed. All other * properties remain intact, and further updates to {@code graph} will be reflected in the view. */ public static <N> Graph<N> transpose(Graph<N> graph) { if (!graph.isDirected()) { return graph; // the transpose of an undirected graph is an identical graph } if (graph instanceof TransposedGraph) { return ((TransposedGraph<N>) graph).graph; } return new TransposedGraph<N>(graph); } private static class TransposedGraph<N> extends AbstractGraph<N> { private final Graph<N> graph; TransposedGraph(Graph<N> graph) { this.graph = graph; } @Override public Set<N> nodes() { return graph.nodes(); } /** * Defer to {@link AbstractGraph#edges()} (based on {@link #successors(Object)}) for full * edges() implementation. */ @Override protected long edgeCount() { return graph.edges().size(); } @Override public boolean isDirected() { return graph.isDirected(); } @Override public boolean allowsSelfLoops() { return graph.allowsSelfLoops(); } @Override public ElementOrder<N> nodeOrder() { return graph.nodeOrder(); } @Override public Set<N> adjacentNodes(Object node) { return graph.adjacentNodes(node); } @Override public Set<N> predecessors(Object node) { return graph.successors(node); // transpose } @Override public Set<N> successors(Object node) { return graph.predecessors(node); // transpose } } /** * Returns a view of {@code graph} with the direction (if any) of every edge reversed. All other * properties remain intact, and further updates to {@code graph} will be reflected in the view. */ public static <N, V> ValueGraph<N, V> transpose(ValueGraph<N, V> graph) { if (!graph.isDirected()) { return graph; // the transpose of an undirected graph is an identical graph } if (graph instanceof TransposedValueGraph) { return ((TransposedValueGraph<N, V>) graph).graph; } return new TransposedValueGraph<N, V>(graph); } private static class TransposedValueGraph<N, V> extends AbstractValueGraph<N, V> { private final ValueGraph<N, V> graph; TransposedValueGraph(ValueGraph<N, V> graph) { this.graph = graph; } @Override public Set<N> nodes() { return graph.nodes(); } /** * Defer to {@link AbstractGraph#edges()} (based on {@link #successors(Object)}) for full * edges() implementation. */ @Override protected long edgeCount() { return graph.edges().size(); } @Override public boolean isDirected() { return graph.isDirected(); } @Override public boolean allowsSelfLoops() { return graph.allowsSelfLoops(); } @Override public ElementOrder<N> nodeOrder() { return graph.nodeOrder(); } @Override public Set<N> adjacentNodes(Object node) { return graph.adjacentNodes(node); } @Override public Set<N> predecessors(Object node) { return graph.successors(node); // transpose } @Override public Set<N> successors(Object node) { return graph.predecessors(node); // transpose } @Override public V edgeValue(Object nodeU, Object nodeV) { return graph.edgeValue(nodeV, nodeU); // transpose } @Override public V edgeValueOrDefault(Object nodeU, Object nodeV, @Nullable V defaultValue) { return graph.edgeValueOrDefault(nodeV, nodeU, defaultValue); // transpose } } /** * Returns a view of {@code network} with the direction (if any) of every edge reversed. All other * properties remain intact, and further updates to {@code network} will be reflected in the view. */ public static <N, E> Network<N, E> transpose(Network<N, E> network) { if (!network.isDirected()) { return network; // the transpose of an undirected network is an identical network } if (network instanceof TransposedNetwork) { return ((TransposedNetwork<N, E>) network).network; } return new TransposedNetwork<N, E>(network); } private static class TransposedNetwork<N, E> extends AbstractNetwork<N, E> { private final Network<N, E> network; TransposedNetwork(Network<N, E> network) { this.network = network; } @Override public Set<N> nodes() { return network.nodes(); } @Override public Set<E> edges() { return network.edges(); } @Override public boolean isDirected() { return network.isDirected(); } @Override public boolean allowsParallelEdges() { return network.allowsParallelEdges(); } @Override public boolean allowsSelfLoops() { return network.allowsSelfLoops(); } @Override public ElementOrder<N> nodeOrder() { return network.nodeOrder(); } @Override public ElementOrder<E> edgeOrder() { return network.edgeOrder(); } @Override public Set<N> adjacentNodes(Object node) { return network.adjacentNodes(node); } @Override public Set<N> predecessors(Object node) { return network.successors(node); // transpose } @Override public Set<N> successors(Object node) { return network.predecessors(node); // transpose } @Override public Set<E> incidentEdges(Object node) { return network.incidentEdges(node); } @Override public Set<E> inEdges(Object node) { return network.outEdges(node); // transpose } @Override public Set<E> outEdges(Object node) { return network.inEdges(node); // transpose } @Override public EndpointPair<N> incidentNodes(Object edge) { EndpointPair<N> endpointPair = network.incidentNodes(edge); return EndpointPair.of(network, endpointPair.nodeV(), endpointPair.nodeU()); // transpose } @Override public Set<E> adjacentEdges(Object edge) { return network.adjacentEdges(edge); } @Override public Set<E> edgesConnecting(Object nodeU, Object nodeV) { return network.edgesConnecting(nodeV, nodeU); // transpose } } // Graph copy methods /** * Returns the subgraph of {@code graph} induced by {@code nodes}. This subgraph is a new graph * that contains all of the nodes in {@code nodes}, and all of the {@link Graph#edges() edges} * from {@code graph} for which both nodes are contained by {@code nodes}. * * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph */ public static <N> MutableGraph<N> inducedSubgraph(Graph<N> graph, Iterable<? extends N> nodes) { MutableGraph<N> subgraph = GraphBuilder.from(graph).build(); for (N node : nodes) { subgraph.addNode(node); } for (N node : subgraph.nodes()) { for (N successorNode : graph.successors(node)) { if (subgraph.nodes().contains(successorNode)) { subgraph.putEdge(node, successorNode); } } } return subgraph; } /** * Returns the subgraph of {@code graph} induced by {@code nodes}. This subgraph is a new graph * that contains all of the nodes in {@code nodes}, and all of the {@link Graph#edges() edges} * (and associated edge values) from {@code graph} for which both nodes are contained by {@code * nodes}. * * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph */ public static <N, V> MutableValueGraph<N, V> inducedSubgraph( ValueGraph<N, V> graph, Iterable<? extends N> nodes) { MutableValueGraph<N, V> subgraph = ValueGraphBuilder.from(graph).build(); for (N node : nodes) { subgraph.addNode(node); } for (N node : subgraph.nodes()) { for (N successorNode : graph.successors(node)) { if (subgraph.nodes().contains(successorNode)) { subgraph.putEdgeValue(node, successorNode, graph.edgeValue(node, successorNode)); } } } return subgraph; } /** * Returns the subgraph of {@code network} induced by {@code nodes}. This subgraph is a new graph * that contains all of the nodes in {@code nodes}, and all of the {@link Network#edges() edges} * from {@code network} for which the {@link Network#incidentNodes(Object) incident nodes} are * both contained by {@code nodes}. * * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph */ public static <N, E> MutableNetwork<N, E> inducedSubgraph( Network<N, E> network, Iterable<? extends N> nodes) { MutableNetwork<N, E> subgraph = NetworkBuilder.from(network).build(); for (N node : nodes) { subgraph.addNode(node); } for (N node : subgraph.nodes()) { for (E edge : network.outEdges(node)) { N successorNode = network.incidentNodes(edge).adjacentNode(node); if (subgraph.nodes().contains(successorNode)) { subgraph.addEdge(node, successorNode, edge); } } } return subgraph; } /** Creates a mutable copy of {@code graph} with the same nodes and edges. */ public static <N> MutableGraph<N> copyOf(Graph<N> graph) { MutableGraph<N> copy = GraphBuilder.from(graph).expectedNodeCount(graph.nodes().size()).build(); for (N node : graph.nodes()) { copy.addNode(node); } for (EndpointPair<N> edge : graph.edges()) { copy.putEdge(edge.nodeU(), edge.nodeV()); } return copy; } /** Creates a mutable copy of {@code graph} with the same nodes, edges, and edge values. */ public static <N, V> MutableValueGraph<N, V> copyOf(ValueGraph<N, V> graph) { MutableValueGraph<N, V> copy = ValueGraphBuilder.from(graph).expectedNodeCount(graph.nodes().size()).build(); for (N node : graph.nodes()) { copy.addNode(node); } for (EndpointPair<N> edge : graph.edges()) { copy.putEdgeValue(edge.nodeU(), edge.nodeV(), graph.edgeValue(edge.nodeU(), edge.nodeV())); } return copy; } /** Creates a mutable copy of {@code network} with the same nodes and edges. */ public static <N, E> MutableNetwork<N, E> copyOf(Network<N, E> network) { MutableNetwork<N, E> copy = NetworkBuilder.from(network) .expectedNodeCount(network.nodes().size()) .expectedEdgeCount(network.edges().size()) .build(); for (N node : network.nodes()) { copy.addNode(node); } for (E edge : network.edges()) { EndpointPair<N> endpointPair = network.incidentNodes(edge); copy.addEdge(endpointPair.nodeU(), endpointPair.nodeV(), edge); } return copy; } @CanIgnoreReturnValue static int checkNonNegative(int value) { checkArgument(value >= 0, "Not true that %s is non-negative.", value); return value; } @CanIgnoreReturnValue static int checkPositive(int value) { checkArgument(value > 0, "Not true that %s is positive.", value); return value; } @CanIgnoreReturnValue static long checkNonNegative(long value) { checkArgument(value >= 0, "Not true that %s is non-negative.", value); return value; } @CanIgnoreReturnValue static long checkPositive(long value) { checkArgument(value > 0, "Not true that %s is positive.", value); return value; } /** * An enum representing the state of a node during DFS. {@code PENDING} means that the node is on * the stack of the DFS, while {@code COMPLETE} means that the node and all its successors have * been already explored. Any node that has not been explored will not have a state at all. */ private enum NodeVisitState { PENDING, COMPLETE } }