/* This file is part of VoltDB. * Copyright (C) 2008-2017 VoltDB Inc. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with VoltDB. If not, see <http://www.gnu.org/licenses/>. */ package org.voltdb.plannodes; import java.util.Collection; import org.json_voltpatches.JSONException; import org.json_voltpatches.JSONObject; import org.json_voltpatches.JSONStringer; import org.voltdb.catalog.Database; import org.voltdb.compiler.DatabaseEstimates; import org.voltdb.compiler.ScalarValueHints; import org.voltdb.expressions.AbstractExpression; import org.voltdb.expressions.AbstractSubqueryExpression; import org.voltdb.expressions.TupleValueExpression; import org.voltdb.types.PlanNodeType; import org.voltdb.types.SortDirectionType; public class NestLoopIndexPlanNode extends AbstractJoinPlanNode { public NestLoopIndexPlanNode() { super(); } @Override public PlanNodeType getPlanNodeType() { return PlanNodeType.NESTLOOPINDEX; } @Override public void generateOutputSchema(Database db) { // Important safety tip regarding this inlined // index scan and ITS inlined projection: // That projection is currently only used/usable as // a means to narrow the set of columns from the // indexscan's target table that make it into the // rest of the plan. the expressions that are // given to the projection are currently not ever used IndexScanPlanNode inlineScan = (IndexScanPlanNode) m_inlineNodes.get(PlanNodeType.INDEXSCAN); assert(inlineScan != null); inlineScan.generateOutputSchema(db); assert(m_children.size() == 1); m_children.get(0).generateOutputSchema(db); // Join the schema together to form the output schema // The child subplan's output is the outer table // The inlined node's output is the inner table. // // Note that the inner table's contribution to the join_tuple doesn't include // all the columns from the inner table---just the ones needed as determined by // the inlined scan's own inlined projection, as described above. m_outputSchemaPreInlineAgg = m_children.get(0).getOutputSchema(). join(inlineScan.getOutputSchema()).copyAndReplaceWithTVE(); m_hasSignificantOutputSchema = true; generateRealOutputSchema(db); // Generate the output schema for subqueries Collection<AbstractExpression> subqueryExpressions = findAllSubquerySubexpressions(); for (AbstractExpression subqueryExpression : subqueryExpressions) { assert(subqueryExpression instanceof AbstractSubqueryExpression); ((AbstractSubqueryExpression) subqueryExpression).generateOutputSchema(db); } } @Override public void resolveColumnIndexes() { IndexScanPlanNode inlineScan = (IndexScanPlanNode) m_inlineNodes.get(PlanNodeType.INDEXSCAN); assert (m_children.size() == 1 && inlineScan != null); for (AbstractPlanNode child : m_children) { child.resolveColumnIndexes(); } LimitPlanNode limit = (LimitPlanNode)getInlinePlanNode(PlanNodeType.LIMIT); if (limit != null) { // output schema of limit node has not been used limit.m_outputSchema = m_outputSchemaPreInlineAgg; limit.m_hasSignificantOutputSchema = false; } // We need the schema from the target table from the inlined index final NodeSchema completeInnerTableSchema = inlineScan.getTableSchema(); // We need the output schema from the child node final NodeSchema outerSchema = m_children.get(0).getOutputSchema(); // pull every expression out of the inlined index scan // and resolve all of the TVEs against our two input schema from above. // // Tickets ENG-9389, ENG-9533: we use the complete schema for the inner // table (rather than the smaller schema from the inlined index scan's // inlined project node) because the inlined scan has no temp table, // so predicates will be accessing the index-scanned table directly. resolvePredicate(inlineScan.getPredicate(), outerSchema, completeInnerTableSchema); resolvePredicate(inlineScan.getEndExpression(), outerSchema, completeInnerTableSchema); resolvePredicate(inlineScan.getInitialExpression(), outerSchema, completeInnerTableSchema); resolvePredicate(inlineScan.getSkipNullPredicate(), outerSchema, completeInnerTableSchema); resolvePredicate(inlineScan.getSearchKeyExpressions(), outerSchema, completeInnerTableSchema); resolvePredicate(m_preJoinPredicate, outerSchema, completeInnerTableSchema); resolvePredicate(m_joinPredicate, outerSchema, completeInnerTableSchema); resolvePredicate(m_wherePredicate, outerSchema, completeInnerTableSchema); // Resolve subquery expression indexes resolveSubqueryColumnIndexes(); // Resolve TVE indexes for each schema column. for (int i = 0; i < m_outputSchemaPreInlineAgg.size(); ++i) { SchemaColumn col = m_outputSchemaPreInlineAgg.getColumns().get(i); // These are all TVEs. assert(col.getExpression() instanceof TupleValueExpression); TupleValueExpression tve = (TupleValueExpression)col.getExpression(); int index; int tableIdx; if (i < outerSchema.size()) { tableIdx = 0; // 0 for outer table index = outerSchema.getIndexOfTve(tve); if (index >= 0) { tve.setColumnIndex(index); } } else { tableIdx = 1; // 1 for inner table index = tve.setColumnIndexUsingSchema(completeInnerTableSchema); } if (index == -1) { throw new RuntimeException("Unable to find index for column: " + col.toString()); } tve.setTableIndex(tableIdx); } // We want the output columns to be ordered like [outer table columns][inner table columns], // and further ordered by TVE index within the left- and righthand sides. // generateOutputSchema already places outer columns on the left and inner on the right, // so we just need to order the left- and righthand sides by TVE index separately. m_outputSchemaPreInlineAgg.sortByTveIndex(0, outerSchema.size()); m_outputSchemaPreInlineAgg.sortByTveIndex(outerSchema.size(), m_outputSchemaPreInlineAgg.size()); m_hasSignificantOutputSchema = true; resolveRealOutputSchema(); } @Override public void resolveSortDirection() { super.resolveSortDirection(); // special treatment for NLIJ, when the outer table is a materialized scan node // the sort direction from the outer table should be the same as the that in the inner table // (because we set when building this NLIJ) if (m_children.get(0).getPlanNodeType() == PlanNodeType.MATERIALIZEDSCAN) { IndexScanPlanNode ispn = (IndexScanPlanNode) m_inlineNodes.get(PlanNodeType.INDEXSCAN); assert (((MaterializedScanPlanNode)(m_children.get(0))).getSortDirection() == ispn.getSortDirection()); m_sortDirection = ispn.getSortDirection(); } } @Override public void validate() throws Exception { super.validate(); // Check that we have an inline IndexScanPlanNode if (m_inlineNodes.isEmpty()) { throw new Exception("ERROR: No inline PlanNodes are set for " + this); } else if (!m_inlineNodes.containsKey(PlanNodeType.INDEXSCAN)) { throw new Exception("ERROR: No inline PlanNode with type '" + PlanNodeType.INDEXSCAN + "' was set for " + this); } } /** * Does the (sub)plan guarantee an identical result/effect when "replayed" * against the same database state, such as during replication or CL recovery. * @return */ @Override public boolean isOrderDeterministic() { if ( ! super.isOrderDeterministic()) { return false; } IndexScanPlanNode index_scan = getInlineIndexScan(); if ( ! index_scan.isOrderDeterministic()) { m_nondeterminismDetail = index_scan.m_nondeterminismDetail; return false; } return true; } @Override public boolean hasInlinedIndexScanOfTable(String tableName) { IndexScanPlanNode index_scan = getInlineIndexScan(); if (index_scan.getTargetTableName().equals(tableName)) { return true; } else { return getChild(0).hasInlinedIndexScanOfTable(tableName); } } @Override public void computeCostEstimates(long childOutputTupleCountEstimate, DatabaseEstimates estimates, ScalarValueHints[] paramHints) { // Add the cost of the inlined index scan to the cost of processing the input tuples. // This isn't really a fair representation of what's going on, as the index is scanned once // per input tuple, but I think it will still cause the plan selector to pick the join // order with the lowest total access cost. IndexScanPlanNode indexScan = getInlineIndexScan(); m_estimatedOutputTupleCount = indexScan.getEstimatedOutputTupleCount() + childOutputTupleCountEstimate; // Discount outer child estimates based on the number of its filters m_estimatedProcessedTupleCount = indexScan.getEstimatedProcessedTupleCount() + discountEstimatedProcessedTupleCount(m_children.get(0)); } public IndexScanPlanNode getInlineIndexScan() { IndexScanPlanNode indexScan = (IndexScanPlanNode) getInlinePlanNode(PlanNodeType.INDEXSCAN); assert(indexScan != null); return indexScan; } @Override protected String explainPlanForNode(String indent) { return "NESTLOOP INDEX " + this.m_joinType.toString() + " JOIN" + (m_sortDirection == SortDirectionType.INVALID ? "" : " (" + m_sortDirection + ")") + explainFilters(indent); } @Override public void toJSONString(JSONStringer stringer) throws JSONException { super.toJSONString(stringer); if (m_sortDirection != SortDirectionType.INVALID) { stringer.keySymbolValuePair(Members.SORT_DIRECTION.name(), m_sortDirection.toString()); } } @Override public void loadFromJSONObject(JSONObject jobj, Database db) throws JSONException { super.loadFromJSONObject(jobj, db); if ( ! jobj.isNull(Members.SORT_DIRECTION.name())) { m_sortDirection = SortDirectionType.get( jobj.getString(Members.SORT_DIRECTION.name())); } } }