/* This file is part of VoltDB. * Copyright (C) 2008-2017 VoltDB Inc. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with VoltDB. If not, see <http://www.gnu.org/licenses/>. */ package org.voltdb; import java.io.File; import java.io.FileOutputStream; import java.io.IOException; import java.nio.ByteBuffer; import java.nio.channels.FileChannel; import java.util.List; import java.util.concurrent.Callable; import java.util.concurrent.CountDownLatch; import java.util.concurrent.ExecutionException; import java.util.concurrent.Executors; import java.util.concurrent.Future; import java.util.concurrent.ScheduledFuture; import java.util.concurrent.Semaphore; import java.util.concurrent.TimeUnit; import java.util.concurrent.atomic.AtomicInteger; import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.ReentrantLock; import org.apache.hadoop_voltpatches.util.PureJavaCrc32; import org.apache.hadoop_voltpatches.util.PureJavaCrc32C; import org.json_voltpatches.JSONObject; import org.json_voltpatches.JSONStringer; import org.voltcore.logging.VoltLogger; import org.voltcore.utils.Bits; import org.voltcore.utils.CoreUtils; import org.voltcore.utils.DBBPool; import org.voltcore.utils.DBBPool.BBContainer; import org.voltdb.messaging.FastSerializer; import org.voltdb.sysprocs.saverestore.SnapshotUtil; import org.voltdb.utils.CompressionService; import org.voltdb.utils.PosixAdvise; import com.google_voltpatches.common.util.concurrent.Callables; import com.google_voltpatches.common.util.concurrent.Futures; import com.google_voltpatches.common.util.concurrent.ListenableFuture; import com.google_voltpatches.common.util.concurrent.ListeningExecutorService; import com.google_voltpatches.common.util.concurrent.ListeningScheduledExecutorService; import com.google_voltpatches.common.util.concurrent.MoreExecutors; import com.google_voltpatches.common.util.concurrent.UnsynchronizedRateLimiter; public class DefaultSnapshotDataTarget implements SnapshotDataTarget { /* * Make it possible for test code to block a write and thus snapshot completion */ public static volatile CountDownLatch m_simulateBlockedWrite = null; public static volatile boolean m_simulateFullDiskWritingHeader = false; public static volatile boolean m_simulateFullDiskWritingChunk = false; private final File m_file; private final FileChannel m_channel; private final FileOutputStream m_fos; private static final VoltLogger SNAP_LOG = new VoltLogger("SNAPSHOT"); private Runnable m_onCloseHandler = null; /* * If a write fails then this snapshot is hosed. * Set the flag so all writes return immediately. The system still * needs to scan all the tables to clear the dirty bits * so the process continues as if the writes are succeeding. * A more efficient failure mode would do the scan but not the * extra serialization work. */ private volatile boolean m_writeFailed = false; private volatile IOException m_writeException = null; private volatile IOException m_reportedSerializationFailure = null; private volatile long m_bytesWritten = 0; private static final Semaphore m_bytesAllowedBeforeSync = new Semaphore((1024 * 1024) * 256); private final AtomicInteger m_bytesWrittenSinceLastSync = new AtomicInteger(0); private final ScheduledFuture<?> m_syncTask; /* * Accept a single write even though simulating a full disk is enabled; */ private volatile boolean m_acceptOneWrite = false; private boolean m_needsFinalClose = true; @SuppressWarnings("unused") private final String m_tableName; private final AtomicInteger m_outstandingWriteTasks = new AtomicInteger(0); private final ReentrantLock m_outstandingWriteTasksLock = new ReentrantLock(); private final Condition m_noMoreOutstandingWriteTasksCondition = m_outstandingWriteTasksLock.newCondition(); private static final ListeningExecutorService m_es = CoreUtils.getListeningSingleThreadExecutor("Snapshot write service "); static final ListeningScheduledExecutorService m_syncService = MoreExecutors.listeningDecorator( Executors.newSingleThreadScheduledExecutor(CoreUtils.getThreadFactory("Snapshot sync service"))); public static final int SNAPSHOT_SYNC_FREQUENCY = Integer.getInteger("SNAPSHOT_SYNC_FREQUENCY", 500); public static final int SNAPSHOT_FADVISE_BYTES = Integer.getInteger("SNAPSHOT_FADVISE_BYTES", 1024 * 1024 * 2); public static final int SNAPSHOT_RATELIMIT_MEGABYTES; public static final boolean USE_SNAPSHOT_RATELIMIT; static { int limit = Integer.getInteger("SNAPSHOT_RATELIMIT_MEGABYTES", Integer.MAX_VALUE); if (limit < 1) { SNAP_LOG.warn("Invalid snapshot rate limit " + limit + ", no limit will be applied"); SNAPSHOT_RATELIMIT_MEGABYTES = Integer.MAX_VALUE; } else { SNAPSHOT_RATELIMIT_MEGABYTES = limit; } if (SNAPSHOT_RATELIMIT_MEGABYTES < Integer.MAX_VALUE) { USE_SNAPSHOT_RATELIMIT = true; SNAP_LOG.info("Rate limiting snapshots to " + SNAPSHOT_RATELIMIT_MEGABYTES + " megabytes/second"); } else { USE_SNAPSHOT_RATELIMIT = false; } } public static final UnsynchronizedRateLimiter SNAPSHOT_RATELIMITER = UnsynchronizedRateLimiter.create(SNAPSHOT_RATELIMIT_MEGABYTES * 1024.0 * 1024.0, 1, TimeUnit.SECONDS); public static void enforceSnapshotRateLimit(int permits) { if (USE_SNAPSHOT_RATELIMIT) { SNAPSHOT_RATELIMITER.acquire(permits); } } public DefaultSnapshotDataTarget( final File file, final int hostId, final String clusterName, final String databaseName, final String tableName, final int numPartitions, final boolean isReplicated, final List<Integer> partitionIds, final VoltTable schemaTable, final long txnId, final long timestamp) throws IOException { this( file, hostId, clusterName, databaseName, tableName, numPartitions, isReplicated, partitionIds, schemaTable, txnId, timestamp, new int[] { 0, 0, 0, 2 }); } public DefaultSnapshotDataTarget( final File file, final int hostId, final String clusterName, final String databaseName, final String tableName, final int numPartitions, final boolean isReplicated, final List<Integer> partitionIds, final VoltTable schemaTable, final long txnId, final long timestamp, int version[] ) throws IOException { String hostname = CoreUtils.getHostnameOrAddress(); m_file = file; m_tableName = tableName; m_fos = new FileOutputStream(file); m_channel = m_fos.getChannel(); m_needsFinalClose = !isReplicated; final FastSerializer fs = new FastSerializer(); fs.writeInt(0);//CRC fs.writeInt(0);//Header length placeholder fs.writeByte(1);//Indicate the snapshot was not completed, set to true for the CRC calculation, false later for (int ii = 0; ii < 4; ii++) { fs.writeInt(version[ii]);//version } JSONStringer stringer = new JSONStringer(); byte jsonBytes[] = null; try { stringer.object(); stringer.keySymbolValuePair("txnId", txnId); stringer.keySymbolValuePair("hostId", hostId); stringer.keySymbolValuePair("hostname", hostname); stringer.keySymbolValuePair("clusterName", clusterName); stringer.keySymbolValuePair("databaseName", databaseName); stringer.keySymbolValuePair("tableName", tableName.toUpperCase()); stringer.keySymbolValuePair("isReplicated", isReplicated); stringer.keySymbolValuePair("isCompressed", true); stringer.keySymbolValuePair("checksumType", "CRC32C"); stringer.keySymbolValuePair("timestamp", timestamp); /* * The timestamp string is for human consumption, automated stuff should use * the actual timestamp */ stringer.keySymbolValuePair("timestampString", SnapshotUtil.formatHumanReadableDate(timestamp)); if (!isReplicated) { stringer.key("partitionIds").array(); for (int partitionId : partitionIds) { stringer.value(partitionId); } stringer.endArray(); stringer.keySymbolValuePair("numPartitions", numPartitions); } stringer.endObject(); String jsonString = stringer.toString(); JSONObject jsonObj = new JSONObject(jsonString); jsonString = jsonObj.toString(4); jsonBytes = jsonString.getBytes("UTF-8"); } catch (Exception e) { throw new IOException(e); } fs.writeInt(jsonBytes.length); fs.write(jsonBytes); final BBContainer container = fs.getBBContainer(); container.b().position(4); container.b().putInt(container.b().remaining() - 4); container.b().position(0); final byte schemaBytes[]; schemaBytes = PrivateVoltTableFactory.getSchemaBytes(schemaTable); final PureJavaCrc32 crc = new PureJavaCrc32(); ByteBuffer aggregateBuffer = ByteBuffer.allocate(container.b().remaining() + schemaBytes.length); aggregateBuffer.put(container.b()); container.discard(); aggregateBuffer.put(schemaBytes); aggregateBuffer.flip(); crc.update(aggregateBuffer.array(), 4, aggregateBuffer.capacity() - 4); final int crcValue = (int) crc.getValue(); aggregateBuffer.putInt(crcValue).position(8); aggregateBuffer.put((byte)0).position(0);//Haven't actually finished writing file if (m_simulateFullDiskWritingHeader) { m_writeException = new IOException("Disk full"); m_writeFailed = true; m_fos.close(); throw m_writeException; } /* * Be completely sure the write succeeded. If it didn't * the disk is probably full or the path is bunk etc. */ m_acceptOneWrite = true; ListenableFuture<?> writeFuture = write(Callables.returning(DBBPool.wrapBB(aggregateBuffer)), false); try { writeFuture.get(); } catch (InterruptedException e) { m_fos.close(); throw new java.io.InterruptedIOException(); } catch (ExecutionException e) { m_fos.close(); throw m_writeException; } if (m_writeFailed) { m_fos.close(); throw m_writeException; } ScheduledFuture<?> syncTask = null; syncTask = m_syncService.scheduleAtFixedRate(new Runnable() { private long fadvisedBytes = 0; private long syncedBytes = 0; @Override public void run() { //Only sync for at least 4 megabyte of data, enough to amortize the cost of seeking //on ye olden platters. Since we are appending to a file it's actually 2 seeks. while (m_bytesWrittenSinceLastSync.get() > (1024 * 1024 * 4)) { final int bytesSinceLastSync = m_bytesWrittenSinceLastSync.getAndSet(0); long positionAtSync = 0; try { positionAtSync = m_channel.position(); final long syncStart = syncedBytes; syncedBytes = Bits.sync_file_range(SNAP_LOG, m_fos.getFD(), m_channel, syncStart, positionAtSync); } catch (IOException e) { if (!(e instanceof java.nio.channels.AsynchronousCloseException )) { SNAP_LOG.error("Error syncing snapshot", e); } else { SNAP_LOG.debug("Asynchronous close syncing snasphot data, presumably graceful", e); } } m_bytesAllowedBeforeSync.release(bytesSinceLastSync); /* * Don't pollute the page cache with snapshot data, use fadvise * to periodically request the kernel drop pages we have written */ try { if (positionAtSync - fadvisedBytes > SNAPSHOT_FADVISE_BYTES) { //Get aligned start and end position final long fadviseStart = fadvisedBytes; //-1 because we don't want to drop the last page because //we might modify it while appending fadvisedBytes = ((positionAtSync / Bits.pageSize()) - 1) * Bits.pageSize(); final long retval = PosixAdvise.fadvise( m_fos.getFD(), fadviseStart, fadvisedBytes - fadviseStart, PosixAdvise.POSIX_FADV_DONTNEED ); if (retval != 0) { SNAP_LOG.error("Error fadvising snapshot data: " + retval); SNAP_LOG.error( "Params offset " + fadviseStart + " length " + (fadvisedBytes - fadviseStart)); } } } catch (Throwable t) { SNAP_LOG.error("Error fadvising snapshot data", t); } } } }, SNAPSHOT_SYNC_FREQUENCY, SNAPSHOT_SYNC_FREQUENCY, TimeUnit.MILLISECONDS); m_syncTask = syncTask; } @Override public void reportSerializationFailure(IOException ex) { m_reportedSerializationFailure = ex; } @Override public boolean needsFinalClose() { return m_needsFinalClose; } @Override public void close() throws IOException, InterruptedException { try { m_outstandingWriteTasksLock.lock(); try { while (m_outstandingWriteTasks.get() > 0) { m_noMoreOutstandingWriteTasksCondition.await(); } } finally { m_outstandingWriteTasksLock.unlock(); } m_syncTask.cancel(false); ListenableFuture<?> task = m_syncService.submit(new Runnable() { @Override public void run() { // Empty task to wait on 'cancel' above, since m_syncTask.get() // will immediately throw a CancellationException } }); try { task.get(); } catch (ExecutionException e) { SNAP_LOG.error("Error waiting on snapshot sync task cancellation", e); } m_channel.force(false); } finally { m_bytesAllowedBeforeSync.release(m_bytesWrittenSinceLastSync.getAndSet(0)); } m_channel.position(8); ByteBuffer completed = ByteBuffer.allocate(1); if (m_writeFailed || m_reportedSerializationFailure != null) { completed.put((byte)0).flip(); } else { completed.put((byte)1).flip(); } m_channel.write(completed); m_channel.force(false); m_channel.close(); if (m_onCloseHandler != null) { m_onCloseHandler.run(); } if (m_reportedSerializationFailure != null) { // There was an error reported by the EE during serialization throw m_reportedSerializationFailure; } } @Override public int getHeaderSize() { return 0; } /* * Prepend length is basically synonymous with writing actual tuple data and not * the header. */ private ListenableFuture<?> write(final Callable<BBContainer> tupleDataC, final boolean prependLength) { /* * Unwrap the data to be written. For the traditional * snapshot data target this should be a noop. */ BBContainer tupleDataTemp; try { tupleDataTemp = tupleDataC.call(); /* * Can be null if the dedupe filter nulled out the buffer */ if (tupleDataTemp == null) { return Futures.immediateFuture(null); } } catch (Throwable t) { return Futures.immediateFailedFuture(t); } final BBContainer tupleDataCont = tupleDataTemp; if (m_writeFailed) { tupleDataCont.discard(); return null; } ByteBuffer tupleData = tupleDataCont.b(); m_outstandingWriteTasks.incrementAndGet(); Future<BBContainer> compressionTask = null; if (prependLength) { BBContainer cont = DBBPool.allocateDirectAndPool(SnapshotSiteProcessor.m_snapshotBufferCompressedLen); //Skip 4-bytes so the partition ID is not compressed //That way if we detect a corruption we know what partition is bad tupleData.position(tupleData.position() + 4); /* * Leave 12 bytes, it's going to be a 4-byte length prefix, a 4-byte partition id, * and a 4-byte CRC32C of just the header bytes, in addition to the compressed payload CRC * that is 16 bytes, but 4 of those are done by CompressionService */ cont.b().position(12); compressionTask = CompressionService.compressAndCRC32cBufferAsync(tupleData, cont); } final Future<BBContainer> compressionTaskFinal = compressionTask; ListenableFuture<?> writeTask = m_es.submit(new Callable<Object>() { @Override public Object call() throws Exception { try { if (m_acceptOneWrite) { m_acceptOneWrite = false; } else { if (m_simulateBlockedWrite != null) { m_simulateBlockedWrite.await(); } if (m_simulateFullDiskWritingChunk) { //Make sure to consume the result of the compression compressionTaskFinal.get().discard(); throw new IOException("Disk full"); } } final ByteBuffer tupleData = tupleDataCont.b(); int totalWritten = 0; if (prependLength) { BBContainer payloadContainer = compressionTaskFinal.get(); try { final ByteBuffer payloadBuffer = payloadContainer.b(); payloadBuffer.position(0); ByteBuffer lengthPrefix = ByteBuffer.allocate(12); m_bytesAllowedBeforeSync.acquire(payloadBuffer.remaining()); //Length prefix does not include 4 header items, just compressd payload //that follows lengthPrefix.putInt(payloadBuffer.remaining() - 16);//length prefix lengthPrefix.putInt(tupleData.getInt(0)); // partitionId /* * Checksum the header and put it in the payload buffer */ PureJavaCrc32C crc = new PureJavaCrc32C(); crc.update(lengthPrefix.array(), 0, 8); lengthPrefix.putInt((int)crc.getValue()); lengthPrefix.flip(); payloadBuffer.put(lengthPrefix); payloadBuffer.position(0); enforceSnapshotRateLimit(payloadBuffer.remaining()); /* * Write payload to file */ while (payloadBuffer.hasRemaining()) { totalWritten += m_channel.write(payloadBuffer); } } finally { payloadContainer.discard(); } } else { while (tupleData.hasRemaining()) { totalWritten += m_channel.write(tupleData); } } m_bytesWritten += totalWritten; m_bytesWrittenSinceLastSync.addAndGet(totalWritten); } catch (IOException e) { m_writeException = e; SNAP_LOG.error("Error while attempting to write snapshot data to file " + m_file, e); m_writeFailed = true; throw e; } finally { try { tupleDataCont.discard(); } finally { m_outstandingWriteTasksLock.lock(); try { if (m_outstandingWriteTasks.decrementAndGet() == 0) { m_noMoreOutstandingWriteTasksCondition.signalAll(); } } finally { m_outstandingWriteTasksLock.unlock(); } } } return null; } }); return writeTask; } @Override public ListenableFuture<?> write(final Callable<BBContainer> tupleData, int tableId) { return write(tupleData, true); } @Override public long getBytesWritten() { return m_bytesWritten; } @Override public void setOnCloseHandler(Runnable onClose) { m_onCloseHandler = onClose; } @Override public IOException getLastWriteException() { return m_writeException; } @Override public SnapshotFormat getFormat() { return SnapshotFormat.NATIVE; } /** * Get the row count if any, of the content wrapped in the given {@link BBContainer} * @param tupleData * @return the numbers of tuple data rows contained within a container */ @Override public int getInContainerRowCount(BBContainer tupleData) { return SnapshotDataTarget.ROW_COUNT_UNSUPPORTED; } @Override public String toString() { return m_file.toString(); } public static void setRate(final Integer megabytesPerSecond) { m_es.execute(new Runnable() { @Override public void run() { if (megabytesPerSecond == null) { SNAPSHOT_RATELIMITER.setRate(SNAPSHOT_RATELIMIT_MEGABYTES * 1024.0 * 1024.0); } else { SNAPSHOT_RATELIMITER.setRate(megabytesPerSecond * 1024.0 * 1024.0); } } }); } }