/* This file is part of VoltDB. * Copyright (C) 2008-2017 VoltDB Inc. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with VoltDB. If not, see <http://www.gnu.org/licenses/>. */ package org.voltdb.planner.microoptimizations; import java.util.ArrayList; import java.util.List; import org.voltdb.catalog.Index; import org.voltdb.expressions.AbstractExpression; import org.voltdb.plannodes.AbstractPlanNode; import org.voltdb.plannodes.AbstractScanPlanNode; import org.voltdb.plannodes.AggregatePlanNode; import org.voltdb.plannodes.IndexCountPlanNode; import org.voltdb.plannodes.IndexScanPlanNode; import org.voltdb.plannodes.LimitPlanNode; import org.voltdb.plannodes.SeqScanPlanNode; import org.voltdb.plannodes.TableCountPlanNode; import org.voltdb.types.ExpressionType; import org.voltdb.types.PlanNodeType; public class ReplaceWithIndexCounter extends MicroOptimization { @Override protected AbstractPlanNode recursivelyApply(AbstractPlanNode plan) { assert(plan != null); // depth first: // find AggregatePlanNode with exactly one child // where that child is an AbstractScanPlanNode. // Replace any qualifying AggregatePlanNode / AbstractScanPlanNode pair // with an IndexCountPlanNode or TableCountPlanNode ArrayList<AbstractPlanNode> children = new ArrayList<AbstractPlanNode>(); for (int i = 0; i < plan.getChildCount(); i++) children.add(plan.getChild(i)); for (AbstractPlanNode child : children) { // TODO this will break when children feed multiple parents AbstractPlanNode newChild = recursivelyApply(child); // Do a graft into the (parent) plan only if a replacement for a child was found. if (newChild == child) { continue; } boolean replaced = plan.replaceChild(child, newChild); assert(true == replaced); } // check for an aggregation of the right form if ((plan instanceof AggregatePlanNode) == false) return plan; assert(plan.getChildCount() == 1); AggregatePlanNode aggplan = (AggregatePlanNode)plan; // ENG-6131 fixed here. if (! (aggplan.isTableCountStar() || aggplan.isTableNonDistinctCountConstant() || aggplan.isTableCountNonDistinctNullableColumn() )) { return plan; } AbstractPlanNode child = plan.getChild(0); // A table count can replace a seq scan only if it has no predicates. if (child instanceof SeqScanPlanNode) { if (((SeqScanPlanNode)child).getPredicate() != null) { return plan; } AbstractExpression postPredicate = aggplan.getPostPredicate(); if (postPredicate != null) { List<AbstractExpression> aggList = postPredicate.findAllAggregateSubexpressions(); boolean allCountStar = true; for (AbstractExpression expr: aggList) { if (expr.getExpressionType() != ExpressionType.AGGREGATE_COUNT_STAR) { allCountStar = false; break; } } if (allCountStar) { return plan; } } if (hasInlineLimit(aggplan)) { // table count EE executor does not handle inline limit stuff return plan; } return new TableCountPlanNode((AbstractScanPlanNode)child, aggplan); } // Otherwise, optimized counts only replace particular cases of index scan. if ((child instanceof IndexScanPlanNode) == false) return plan; IndexScanPlanNode isp = (IndexScanPlanNode)child; // Guard against (possible future?) cases of indexable subquery. if (((IndexScanPlanNode)child).isSubQuery()) { return plan; } // An index count or table count can replace an index scan only if it has no (post-)predicates // except those (post-)predicates are artifact predicates we added for reverse scan purpose only if (isp.getPredicate() != null && !isp.isPredicatesOptimizableForAggregate()) { return plan; } // With no start or end keys, there's not much a counting index can do. if (isp.getEndExpression() == null && isp.getSearchKeyExpressions().size() == 0) { // An indexed query without a where clause can fall back to a plain old table count. // This can only happen when a confused query like // "select count(*) from table order by index_key;" // meets a naive planner that doesn't just cull the no-op ORDER BY. Who, us? if (hasInlineLimit(aggplan)) { return plan; } return new TableCountPlanNode(isp, aggplan); } // check for the index's support for counting Index idx = isp.getCatalogIndex(); if ( ! idx.getCountable()) { return plan; } // The core idea is that counting index needs to know the start key and end key to // jump to to get counts instead of actually doing any scanning. // Options to be determined are: // - whether each of the start/end keys is missing, partial (a prefix of a compund key), or complete, // - whether the count should include or exclude entries exactly matching each of the start/end keys. // Not all combinations of these options are supported; // unsupportable cases cause the factory method to return null. IndexCountPlanNode countingPlan = IndexCountPlanNode.createOrNull(isp, aggplan); if (countingPlan == null) { return plan; } return countingPlan; } public static boolean hasInlineLimit (AbstractPlanNode node) { AbstractPlanNode inlineNode = node.getInlinePlanNode(PlanNodeType.LIMIT); if (inlineNode != null) { assert(inlineNode instanceof LimitPlanNode); // Table count with limit greater than 0 will not make a difference. // The better way is to check m_limit and return true ONLY for m_limit == 0. // However, the parameterized plan make is more complicated. // Be conservative about the silly query without wrong answers now. return true; } return false; } }