/* This file is part of VoltDB. * Copyright (C) 2008-2017 VoltDB Inc. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ /* * This sample uses multiple threads to post synchronous requests to the * VoltDB server, simulating multiple client application posting * synchronous requests to the database, using the native VoltDB client * library. * * It also has the additional option to add a number of threads submitting * one-shot multipartition reads to the cluster, which might reflect * an infrequently performed query submitted against a high-velocity intake * stream. * * While synchronous processing can cause performance bottlenecks (each * caller waits for a transaction answer before calling another * transaction), the VoltDB cluster at large is still able to perform at * blazing speeds when many clients are connected to it. */ package oneshotkv; import java.util.ArrayList; import java.util.Map.Entry; import java.util.Random; import java.util.Timer; import java.util.TimerTask; import java.util.concurrent.CountDownLatch; import java.util.concurrent.atomic.AtomicBoolean; import java.util.concurrent.atomic.AtomicLong; import org.voltdb.CLIConfig; import org.voltdb.VoltTable; import org.voltdb.client.Client; import org.voltdb.client.ClientConfig; import org.voltdb.client.ClientFactory; import org.voltdb.client.ClientResponse; import org.voltdb.client.ClientStats; import org.voltdb.client.ClientStatsContext; import org.voltdb.client.ClientStatusListenerExt; import org.voltdb.client.NullCallback; public class OneShotBenchmark { // handy, rather than typing this out several times static final String HORIZONTAL_RULE = "----------" + "----------" + "----------" + "----------" + "----------" + "----------" + "----------" + "----------" + "\n"; // validated command line configuration final KVConfig config; // Reference to the database connection we will use final Client client; final Client mpClient; // Timer for periodic stats printing Timer timer; // Benchmark start time long benchmarkStartTS; // Get a payload generator to create random Key-Value pairs to store in the database // and process (uncompress) pairs retrieved from the database. final PayloadProcessor processor; // random number generator with constant seed final Random rand = new Random(0); // Flags to tell the worker threads to stop or go AtomicBoolean warmupComplete = new AtomicBoolean(false); AtomicBoolean benchmarkComplete = new AtomicBoolean(false); // Statistics manager objects from the client final ClientStatsContext periodicStatsContext; final ClientStatsContext fullStatsContext; final ClientStatsContext mpFullStatsContext; final ClientStatsContext mpPeriodicStatsContext; // kv benchmark state final AtomicLong successfulGets = new AtomicLong(0); final AtomicLong missedGets = new AtomicLong(0); final AtomicLong failedGets = new AtomicLong(0); final AtomicLong rawGetData = new AtomicLong(0); final AtomicLong networkGetData = new AtomicLong(0); final AtomicLong successfulPuts = new AtomicLong(0); final AtomicLong failedPuts = new AtomicLong(0); final AtomicLong rawPutData = new AtomicLong(0); final AtomicLong networkPutData = new AtomicLong(0); /** * Uses included {@link CLIConfig} class to * declaratively state command line options with defaults * and validation. */ static class KVConfig extends CLIConfig { @Option(desc = "Interval for performance feedback, in seconds.") long displayinterval = 5; @Option(desc = "Benchmark duration, in seconds.") int duration = 10; @Option(desc = "Warmup duration in seconds.") int warmup = 5; @Option(desc = "Comma separated list of the form server[:port] to connect to.") String servers = "localhost"; @Option(desc = "Number of keys to preload.") int poolsize = 100000; @Option(desc = "Whether to preload a specified number of keys and values.") boolean preload = true; @Option(desc = "Fraction of SP ops that are gets (vs puts).") double getputratio = 0.90; @Option(desc = "Fraction of MP ops that are gets (vs puts).") double mpgetputratio = 1.00; @Option(desc = "Size of keys in bytes.") int keysize = 32; @Option(desc = "Minimum value size in bytes.") int minvaluesize = 1024; @Option(desc = "Maximum value size in bytes.") int maxvaluesize = 1024; @Option(desc = "Number of values considered for each value byte.") int entropy = 127; @Option(desc = "Compress values on the client side.") boolean usecompression= false; @Option(desc = "Number of concurrent threads synchronously calling SP procedures.") int threads = 40; @Option(desc = "Number of concurrent threads synchronously calling MP procedures.") int mpthreads = 3; @Option(desc = "Number of partitions the multi partitition put writes two.") int mpputpartitions = 1; @Option(desc = "Use optimistic update for multi partition put. (enables preload)") boolean mpputoptimistic = true; @Option(desc = "Filename to write raw summary statistics to.") String statsfile = ""; @Option(desc = "Choose which stats to export.") boolean exportStatsfalseSPtrueMP=false; @Override public void validate() { if (duration <= 0) exitWithMessageAndUsage("duration must be > 0"); if (warmup < 0) exitWithMessageAndUsage("warmup must be >= 0"); if (displayinterval <= 0) exitWithMessageAndUsage("displayinterval must be > 0"); if (poolsize <= 0) exitWithMessageAndUsage("poolsize must be > 0"); if (getputratio < 0) exitWithMessageAndUsage("getputratio must be >= 0"); if (getputratio > 1) exitWithMessageAndUsage("getputratio must be <= 1"); if (keysize <= 0) exitWithMessageAndUsage("keysize must be > 0"); if (keysize > 250) exitWithMessageAndUsage("keysize must be <= 250"); if (minvaluesize <= 0) exitWithMessageAndUsage("minvaluesize must be > 0"); if (maxvaluesize <= 0) exitWithMessageAndUsage("maxvaluesize must be > 0"); if (entropy <= 0) exitWithMessageAndUsage("entropy must be > 0"); if (entropy > 127) exitWithMessageAndUsage("entropy must be <= 127"); if (threads < 0) exitWithMessageAndUsage("threads must be => 0"); if (mpthreads < 0) exitWithMessageAndUsage("mpthreads must be => 0"); if (mpgetputratio < 0) exitWithMessageAndUsage("mpgetputratio must be >= 0"); if (mpgetputratio > 1) exitWithMessageAndUsage("mpgetputratio must be <= 1"); if (mpputpartitions < 0) exitWithMessageAndUsage("mpputpartitions must be => 0"); if (mpthreads > 0 && mpgetputratio < 1.0 && mpputoptimistic) { preload = true; } } } /** * Provides a callback to be notified on node failure. * This example only logs the event. */ class StatusListener extends ClientStatusListenerExt { @Override public void connectionLost(String hostname, int port, int connectionsLeft, DisconnectCause cause) { // if the benchmark is still active if (benchmarkComplete.get() == false) { System.err.printf("Connection to %s:%d was lost.\n", hostname, port); } } } /** * Constructor for benchmark instance. * Configures VoltDB client and prints configuration. * * @param config Parsed & validated CLI options. */ public OneShotBenchmark(KVConfig config) { this.config = config; ClientConfig clientConfig = new ClientConfig("", "", new StatusListener()); clientConfig.setClientAffinity(true); client = ClientFactory.createClient(clientConfig); periodicStatsContext = client.createStatsContext(); fullStatsContext = client.createStatsContext(); ClientConfig mpClientConfig = new ClientConfig("", "", new StatusListener()); mpClientConfig.setClientAffinity(true); mpClient = ClientFactory.createClient(mpClientConfig); mpPeriodicStatsContext = mpClient.createStatsContext(); mpFullStatsContext = mpClient.createStatsContext(); processor = new PayloadProcessor(config.keysize, config.minvaluesize, config.maxvaluesize, config.entropy, config.poolsize, config.usecompression); System.out.print(HORIZONTAL_RULE); System.out.println(" Command Line Configuration"); System.out.println(HORIZONTAL_RULE); System.out.println(config.getConfigDumpString()); } /** * Connect to a single server with retry. Limited exponential backoff. * No timeout. This will run until the process is killed if it's not * able to connect. * * @param server hostname:port or just hostname (hostname can be ip). */ static void connectToOneServerWithRetry(Client client, String server) { int sleep = 1000; while (true) { try { client.createConnection(server); break; } catch (Exception e) { System.err.printf("Connection failed - retrying in %d second(s).\n", sleep / 1000); try { Thread.sleep(sleep); } catch (Exception interruted) {} if (sleep < 8000) sleep += sleep; } } System.out.printf("Connected to VoltDB node at: %s.\n", server); } /** * Connect to a set of servers in parallel. Each will retry until * connection. This call will block until all have connected. * * @param servers A comma separated list of servers using the hostname:port * syntax (where :port is optional). * @throws InterruptedException if anything bad happens with the threads. */ static void connect(final Client client, String servers) throws InterruptedException { System.out.println("Connecting to VoltDB..."); String[] serverArray = servers.split(","); final CountDownLatch connections = new CountDownLatch(serverArray.length); // use a new thread to connect to each server for (final String server : serverArray) { new Thread(new Runnable() { @Override public void run() { connectToOneServerWithRetry(client, server); connections.countDown(); } }).start(); } // block until all have connected connections.await(); } /** * Create a Timer task to display performance data on the Vote procedure * It calls printStatistics() every displayInterval seconds */ public void schedulePeriodicStats() { timer = new Timer(); TimerTask statsPrinting = new TimerTask() { @Override public void run() { printStatistics(); } }; timer.scheduleAtFixedRate(statsPrinting, config.displayinterval * 1000, config.displayinterval * 1000); } /** * Prints a one line update on performance that can be printed * periodically during a benchmark. */ public synchronized void printStatistics() { ClientStats stats = periodicStatsContext.fetchAndResetBaseline().getStats(); long time = Math.round((stats.getEndTimestamp() - benchmarkStartTS) / 1000.0); System.out.printf("%02d:%02d:%02d ", time / 3600, (time / 60) % 60, time % 60); System.out.printf("Throughput %d/s, ", stats.getTxnThroughput()); System.out.printf("Aborts/Failures %d/%d, ", stats.getInvocationAborts(), stats.getInvocationErrors()); System.out.printf("Avg/95%% Latency %.2f/%.2fms\n", stats.getAverageLatency(), stats.kPercentileLatencyAsDouble(0.95)); stats = mpPeriodicStatsContext.fetchAndResetBaseline().getStats(); System.out.printf("%02d:%02d:%02d ", time / 3600, (time / 60) % 60, time % 60); System.out.printf("MP Throughput %d/s, ", stats.getTxnThroughput()); System.out.printf("Aborts/Failures %d/%d, ", stats.getInvocationAborts(), stats.getInvocationErrors()); System.out.printf("Avg/95%% Latency %.2f/%.2fms\n", stats.getAverageLatency(), stats.kPercentileLatencyAsDouble(0.95)); } /** * Prints the results of the voting simulation and statistics * about performance. * * @throws Exception if anything unexpected happens. */ public synchronized void printResults() throws Exception { ClientStats stats = fullStatsContext.fetch().getStats(); // 1. Get/Put performance results String display = "\n" + HORIZONTAL_RULE + " KV Store Results\n" + HORIZONTAL_RULE + "\nA total of %,d operations were posted...\n" + " - GETs: %,9d Operations (%,d Misses and %,d Failures)\n" + " %,9d MB in compressed store data\n" + " %,9d MB in uncompressed application data\n" + " Network Throughput: %6.3f Gbps*\n" + " - PUTs: %,9d Operations (%,d Failures)\n" + " %,9d MB in compressed store data\n" + " %,9d MB in uncompressed application data\n" + " Network Throughput: %6.3f Gbps*\n" + " - Total Network Throughput: %6.3f Gbps*\n\n" + "* Figure includes key & value traffic but not database protocol overhead.\n\n"; double oneGigabit = (1024 * 1024 * 1024) / 8; long oneMB = (1024 * 1024); double getThroughput = networkGetData.get() + (successfulGets.get() * config.keysize); getThroughput /= (oneGigabit * config.duration); long totalPuts = successfulPuts.get() + failedPuts.get(); double putThroughput = networkGetData.get() + (totalPuts * config.keysize); putThroughput /= (oneGigabit * config.duration); System.out.printf(display, stats.getInvocationsCompleted(), successfulGets.get(), missedGets.get(), failedGets.get(), networkGetData.get() / oneMB, rawGetData.get() / oneMB, getThroughput, successfulPuts.get(), failedPuts.get(), networkPutData.get() / oneMB, rawPutData.get() / oneMB, putThroughput, getThroughput + putThroughput); // 2. Performance statistics System.out.print(HORIZONTAL_RULE); System.out.println(" Client Workload Statistics"); System.out.println(HORIZONTAL_RULE); System.out.printf("Average throughput: %,9d txns/sec\n", stats.getTxnThroughput()); System.out.printf("Average latency: %,9.2f ms\n", stats.getAverageLatency()); System.out.printf("95th percentile latency: %,9.2f ms\n", stats.kPercentileLatencyAsDouble(.95)); System.out.printf("99th percentile latency: %,9.2f ms\n", stats.kPercentileLatencyAsDouble(.99)); for (Entry<String, ClientStats> e : fullStatsContext.getStatsByProc().entrySet()) { System.out.println("\nPROC: " + e.getKey()); System.out.printf("Average throughput: %,9d txns/sec\n", e.getValue().getTxnThroughput()); System.out.printf("Average latency: %,9.2f ms\n", e.getValue().getAverageLatency()); System.out.printf("95th percentile latency: %,9.2f ms\n", e.getValue().kPercentileLatencyAsDouble(.95)); System.out.printf("99th percentile latency: %,9.2f ms\n", e.getValue().kPercentileLatencyAsDouble(.99)); } ClientStats mpstats = mpFullStatsContext.fetch().getStats(); for (Entry<String, ClientStats> e : mpFullStatsContext.getStatsByProc().entrySet()) { System.out.println("\nMP PROC: " + e.getKey()); System.out.printf("Average throughput: %,9d txns/sec\n", e.getValue().getTxnThroughput()); System.out.printf("Average latency: %,9.2f ms\n", e.getValue().getAverageLatency()); System.out.printf("95th percentile latency: %,9.2f ms\n", e.getValue().kPercentileLatencyAsDouble(.95)); System.out.printf("99th percentile latency: %,9.2f ms\n", e.getValue().kPercentileLatencyAsDouble(.99)); } System.out.print("\n" + HORIZONTAL_RULE); System.out.println(" System Server Statistics"); System.out.println(HORIZONTAL_RULE); System.out.printf("Reported Internal Avg Latency: %,9.2f ms\n", stats.getAverageInternalLatency()); System.out.printf("Reported Internal Avg MP Latency: %,9.2f ms\n", mpFullStatsContext.getStats().getAverageInternalLatency()); // 3. Write stats to file if requested if (!config.exportStatsfalseSPtrueMP) { System.out.println("Exporting SP stats context"); client.writeSummaryCSV(stats, config.statsfile); } else { System.out.println("Exporting MP stats context"); mpClient.writeSummaryCSV(mpstats, config.statsfile); } } /** * While <code>benchmarkComplete</code> is set to false, run as many * synchronous procedure calls as possible and record the results. * */ class KVThread implements Runnable { final boolean m_sp; final Client m_client; KVThread(Client client, boolean sp) { m_sp = sp; m_client = client; } @Override public void run() { while (warmupComplete.get() == false) { if (m_sp) { // Decide whether to perform a GET or PUT operation if (rand.nextDouble() < config.getputratio) { // Get a key/value pair, synchronously try { m_client.callProcedure("Get", processor.generateRandomKeyForRetrieval()); } catch (Exception e) {} } else { // Put a key/value pair, synchronously final PayloadProcessor.Pair pair = processor.generateForStore(); try { m_client.callProcedure("Put", pair.Key, pair.getStoreValue()); } catch (Exception e) {} } } else { if (rand.nextDouble() < config.mpgetputratio) { try { m_client.callProcedure("GetMP", processor.generateRandomKeyForRetrieval()); } catch (Exception e) {} } else { try { String [] keys = processor.generateAdjecentKeys(config.mpputpartitions); final PayloadProcessor.Pair pair = processor.generateForStore(); m_client.callProcedure( (config.mpputoptimistic ? "OptimisticPutsMP" : "PutsMP"), pair.getStoreValue(), keys ); } catch (Exception e) {} } } } while (benchmarkComplete.get() == false) { if (m_sp) { // Decide whether to perform a GET or PUT operation if (rand.nextDouble() < config.getputratio) { // Get a key/value pair, synchronously try { ClientResponse response = m_client.callProcedure("Get", processor.generateRandomKeyForRetrieval()); final VoltTable pairData = response.getResults()[0]; // Cache miss (Key does not exist) if (pairData.getRowCount() == 0) missedGets.incrementAndGet(); else { final PayloadProcessor.Pair pair = processor.retrieveFromStore(pairData.fetchRow(0).getString(0), pairData.fetchRow(0).getVarbinary(1)); successfulGets.incrementAndGet(); networkGetData.addAndGet(pair.getStoreValueLength()); rawGetData.addAndGet(pair.getRawValueLength()); } } catch (Exception e) { failedGets.incrementAndGet(); } } else { // Put a key/value pair, synchronously final PayloadProcessor.Pair pair = processor.generateForStore(); try { m_client.callProcedure("Put", pair.Key, pair.getStoreValue()); successfulPuts.incrementAndGet(); } catch (Exception e) { failedPuts.incrementAndGet(); } networkPutData.addAndGet(pair.getStoreValueLength()); rawPutData.addAndGet(pair.getRawValueLength()); } } else { if (rand.nextDouble() < config.mpgetputratio) { try { ClientResponse response = m_client.callProcedure("GetMP", processor.generateRandomKeyForRetrieval()); final VoltTable pairData = response.getResults()[0]; // Cache miss (Key does not exist) if (pairData.getRowCount() == 0) missedGets.incrementAndGet(); else { final PayloadProcessor.Pair pair = processor.retrieveFromStore(pairData.fetchRow(0).getString(0), pairData.fetchRow(0).getVarbinary(1)); successfulGets.incrementAndGet(); networkGetData.addAndGet(pair.getStoreValueLength()); rawGetData.addAndGet(pair.getRawValueLength()); } } catch (Exception e) { failedGets.incrementAndGet(); } } else { final String [] keys = processor.generateAdjecentKeys(config.mpputpartitions); final PayloadProcessor.Pair pair = processor.generateForStore(); try { m_client.callProcedure( (config.mpputoptimistic ? "OptimisticPutsMP" : "PutsMP"), pair.getStoreValue(), keys ); successfulPuts.incrementAndGet(); } catch (Exception e) { failedPuts.incrementAndGet(); } networkPutData.addAndGet(pair.getStoreValueLength()); rawPutData.addAndGet(pair.getRawValueLength()); } } } } } /** * Core benchmark code. * Connect. Initialize. Run the loop. Cleanup. Print Results. * * @throws Exception if anything unexpected happens. */ public void runBenchmark() throws Exception { System.out.print(HORIZONTAL_RULE); System.out.println(" Setup & Initialization"); System.out.println(HORIZONTAL_RULE); // connect to one or more servers, loop until success connect(client, config.servers); connect(mpClient, config.servers); // preload keys if requested System.out.println(); if (config.preload) { System.out.println("Preloading data store..."); for(int i=0; i < config.poolsize; i++) { client.callProcedure(new NullCallback(), "Put", String.format(processor.KeyFormat, i), processor.generateForStore().getStoreValue()); } client.drain(); System.out.println("Preloading complete.\n"); } System.out.print(HORIZONTAL_RULE); System.out.println("Starting Benchmark"); System.out.println(HORIZONTAL_RULE); // create/start the requested number of threads ArrayList<Thread> kvThreads = new ArrayList<Thread>(); for (int i = 0; i < config.threads; ++i) { kvThreads.add(new Thread(new KVThread(client, true))); } for (int i = 0; i < config.mpthreads; ++i) { kvThreads.add(new Thread(new KVThread(mpClient, false))); } for (Thread thread : kvThreads) { thread.start(); } // Run the benchmark loop for the requested warmup time System.out.println("Warming up..."); Thread.sleep(1000l * config.warmup); // signal to threads to end the warmup phase warmupComplete.set(true); // reset the stats after warmup fullStatsContext.fetchAndResetBaseline(); periodicStatsContext.fetchAndResetBaseline(); mpFullStatsContext.fetchAndResetBaseline(); // print periodic statistics to the console benchmarkStartTS = System.currentTimeMillis(); schedulePeriodicStats(); // Run the benchmark loop for the requested warmup time System.out.println("\nRunning benchmark..."); Thread.sleep(1000l * config.duration); // stop the threads benchmarkComplete.set(true); // cancel periodic stats printing timer.cancel(); // block until all outstanding txns return client.drain(); mpClient.drain(); // join on the threads for (Thread t : kvThreads) { t.join(); } // print the summary results printResults(); // close down the client connections client.close(); } /** * Main routine creates a benchmark instance and kicks off the run method. * * @param args Command line arguments. * @throws Exception if anything goes wrong. * @see {@link KVConfig} */ public static void main(String[] args) throws Exception { // create a configuration from the arguments KVConfig config = new KVConfig(); config.parse(OneShotBenchmark.class.getName(), args); OneShotBenchmark benchmark = new OneShotBenchmark(config); benchmark.runBenchmark(); } }