/* * Copyright 2004 The Apache Software Foundation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.logging.impl; import java.lang.ref.ReferenceQueue; import java.lang.ref.WeakReference; import java.util.*; /** * <p>Implementation of <code>Hashtable</code> that uses <code>WeakReference</code>'s * to hold its keys thus allowing them to be reclaimed by the garbage collector. * The associated values are retained using strong references.</p> * * <p>This class follows the symantics of <code>Hashtable</code> as closely as * possible. It therefore does not accept null values or keys.</p> * * <p><strong>Note:</strong> * This is <em>not</em> intended to be a general purpose hash table replacement. * This implementation is also tuned towards a particular purpose: for use as a replacement * for <code>Hashtable</code> in <code>LogFactory</code>. This application requires * good liveliness for <code>get</code> and <code>put</code>. Various tradeoffs * have been made with this in mind. * </p> * <p> * <strong>Usage:</strong> typical use case is as a drop-in replacement * for the <code>Hashtable</code> used in <code>LogFactory</code> for J2EE enviroments * running 1.3+ JVMs. Use of this class <i>in most cases</i> (see below) will * allow classloaders to be collected by the garbage collector without the need * to call {@link org.apache.commons.logging.LogFactory#release(ClassLoader) LogFactory.release(ClassLoader)}. * </p> * * <p><code>org.apache.commons.logging.LogFactory</code> checks whether this class * can be supported by the current JVM, and if so then uses it to store * references to the <code>LogFactory</code> implementationd it loads * (rather than using a standard Hashtable instance). * Having this class used instead of <code>Hashtable</code> solves * certain issues related to dynamic reloading of applications in J2EE-style * environments. However this class requires java 1.3 or later (due to its use * of <code>java.lang.ref.WeakReference</code> and associates). * And by the way, this extends <code>Hashtable</code> rather than <code>HashMap</code> * for backwards compatibility reasons. See the documentation * for method <code>LogFactory.createFactoryStore</code> for more details.</p> * * <p>The reason all this is necessary is due to a issue which * arises during hot deploy in a J2EE-like containers. * Each component running in the container owns one or more classloaders; when * the component loads a LogFactory instance via the component classloader * a reference to it gets stored in the static LogFactory.factories member, * keyed by the component's classloader so different components don't * stomp on each other. When the component is later unloaded, the container * sets the component's classloader to null with the intent that all the * component's classes get garbage-collected. However there's still a * reference to the component's classloader from a key in the "global" * <code>LogFactory</code>'s factories member! If <code>LogFactory.release()</code> * is called whenever component is unloaded, the classloaders will be correctly * garbage collected; this <i>should</i> be done by any container that * bundles commons-logging by default. However, holding the classloader * references weakly ensures that the classloader will be garbage collected * without the container performing this step. </p> * * <p> * <strong>Limitations:</strong> * There is still one (unusual) scenario in which a component will not * be correctly unloaded without an explicit release. Though weak references * are used for its keys, it is necessary to use strong references for its values. * </p> * * <p> If the abstract class <code>LogFactory</code> is * loaded by the container classloader but a subclass of * <code>LogFactory</code> [LogFactory1] is loaded by the component's * classloader and an instance stored in the static map associated with the * base LogFactory class, then there is a strong reference from the LogFactory * class to the LogFactory1 instance (as normal) and a strong reference from * the LogFactory1 instance to the component classloader via * <code>getClass().getClassLoader()</code>. This chain of references will prevent * collection of the child classloader.</p> * * <p> * Such a situation occurs when the commons-logging.jar is * loaded by a parent classloader (e.g. a server level classloader in a * servlet container) and a custom <code>LogFactory</code> implementation is * loaded by a child classloader (e.g. a web app classloader).</p> * * <p>To avoid this scenario, ensure * that any custom LogFactory subclass is loaded by the same classloader as * the base <code>LogFactory</code>. Creating custom LogFactory subclasses is, * however, rare. The standard LogFactoryImpl class should be sufficient * for most or all users.</p> * * * @author Brian Stansberry * * @since 1.1 */ public final class WeakHashtable extends Hashtable { /** * The maximum number of times put() or remove() can be called before * the map will be purged of all cleared entries. */ private static final int MAX_CHANGES_BEFORE_PURGE = 100; /** * The maximum number of times put() or remove() can be called before * the map will be purged of one cleared entry. */ private static final int PARTIAL_PURGE_COUNT = 10; /* ReferenceQueue we check for gc'd keys */ private ReferenceQueue queue = new ReferenceQueue(); /* Counter used to control how often we purge gc'd entries */ private int changeCount = 0; /** * Constructs a WeakHashtable with the Hashtable default * capacity and load factor. */ public WeakHashtable() {} /** *@see Hashtable */ public boolean containsKey(Object key) { // purge should not be required Referenced referenced = new Referenced(key); return super.containsKey(referenced); } /** *@see Hashtable */ public Enumeration elements() { purge(); return super.elements(); } /** *@see Hashtable */ public Set entrySet() { purge(); Set referencedEntries = super.entrySet(); Set unreferencedEntries = new HashSet(); for (Iterator it=referencedEntries.iterator(); it.hasNext();) { Map.Entry entry = (Map.Entry) it.next(); Referenced referencedKey = (Referenced) entry.getKey(); Object key = referencedKey.getValue(); Object value = entry.getValue(); if (key != null) { Entry dereferencedEntry = new Entry(key, value); unreferencedEntries.add(dereferencedEntry); } } return unreferencedEntries; } /** *@see Hashtable */ public Object get(Object key) { // for performance reasons, no purge Referenced referenceKey = new Referenced(key); return super.get(referenceKey); } /** *@see Hashtable */ public Enumeration keys() { purge(); final Enumeration enumer = super.keys(); return new Enumeration() { public boolean hasMoreElements() { return enumer.hasMoreElements(); } public Object nextElement() { Referenced nextReference = (Referenced) enumer.nextElement(); return nextReference.getValue(); } }; } /** *@see Hashtable */ public Set keySet() { purge(); Set referencedKeys = super.keySet(); Set unreferencedKeys = new HashSet(); for (Iterator it=referencedKeys.iterator(); it.hasNext();) { Referenced referenceKey = (Referenced) it.next(); Object keyValue = referenceKey.getValue(); if (keyValue != null) { unreferencedKeys.add(keyValue); } } return unreferencedKeys; } /** *@see Hashtable */ public Object put(Object key, Object value) { // check for nulls, ensuring symantics match superclass if (key == null) { throw new NullPointerException("Null keys are not allowed"); } if (value == null) { throw new NullPointerException("Null values are not allowed"); } // for performance reasons, only purge every // MAX_CHANGES_BEFORE_PURGE times if (changeCount++ > MAX_CHANGES_BEFORE_PURGE) { purge(); changeCount = 0; } // do a partial purge more often else if ((changeCount % PARTIAL_PURGE_COUNT) == 0) { purgeOne(); } Object result = null; Referenced keyRef = new Referenced(key, queue); return super.put(keyRef, value); } /** *@see Hashtable */ public void putAll(Map t) { if (t != null) { Set entrySet = t.entrySet(); for (Iterator it=entrySet.iterator(); it.hasNext();) { Map.Entry entry = (Map.Entry) it.next(); put(entry.getKey(), entry.getValue()); } } } /** *@see Hashtable */ public Collection values() { purge(); return super.values(); } /** *@see Hashtable */ public Object remove(Object key) { // for performance reasons, only purge every // MAX_CHANGES_BEFORE_PURGE times if (changeCount++ > MAX_CHANGES_BEFORE_PURGE) { purge(); changeCount = 0; } // do a partial purge more often else if ((changeCount % PARTIAL_PURGE_COUNT) == 0) { purgeOne(); } return super.remove(new Referenced(key)); } /** *@see Hashtable */ public boolean isEmpty() { purge(); return super.isEmpty(); } /** *@see Hashtable */ public int size() { purge(); return super.size(); } /** *@see Hashtable */ public String toString() { purge(); return super.toString(); } /** * @see Hashtable */ protected void rehash() { // purge here to save the effort of rehashing dead entries purge(); super.rehash(); } /** * Purges all entries whose wrapped keys * have been garbage collected. */ private void purge() { synchronized (queue) { WeakKey key; while ((key = (WeakKey) queue.poll()) != null) { super.remove(key.getReferenced()); } } } /** * Purges one entry whose wrapped key * has been garbage collected. */ private void purgeOne() { synchronized (queue) { WeakKey key = (WeakKey) queue.poll(); if (key != null) { super.remove(key.getReferenced()); } } } /** Entry implementation */ private final static class Entry implements Map.Entry { private final Object key; private final Object value; private Entry(Object key, Object value) { this.key = key; this.value = value; } public boolean equals(Object o) { boolean result = false; if (o != null && o instanceof Map.Entry) { Map.Entry entry = (Map.Entry) o; result = (getKey()==null ? entry.getKey() == null : getKey().equals(entry.getKey())) && (getValue()==null ? entry.getValue() == null : getValue().equals(entry.getValue())); } return result; } public int hashCode() { return (getKey()==null ? 0 : getKey().hashCode()) ^ (getValue()==null ? 0 : getValue().hashCode()); } public Object setValue(Object value) { throw new UnsupportedOperationException("Entry.setValue is not supported."); } public Object getValue() { return value; } public Object getKey() { return key; } } /** Wrapper giving correct symantics for equals and hashcode */ private final static class Referenced { private final WeakReference reference; private final int hashCode; /** * * @throws NullPointerException if referant is <code>null</code> */ private Referenced(Object referant) { reference = new WeakReference(referant); // Calc a permanent hashCode so calls to Hashtable.remove() // work if the WeakReference has been cleared hashCode = referant.hashCode(); } /** * * @throws NullPointerException if key is <code>null</code> */ private Referenced(Object key, ReferenceQueue queue) { reference = new WeakKey(key, queue, this); // Calc a permanent hashCode so calls to Hashtable.remove() // work if the WeakReference has been cleared hashCode = key.hashCode(); } public int hashCode() { return hashCode; } private Object getValue() { return reference.get(); } public boolean equals(Object o) { boolean result = false; if (o instanceof Referenced) { Referenced otherKey = (Referenced) o; Object thisKeyValue = getValue(); Object otherKeyValue = otherKey.getValue(); if (thisKeyValue == null) { result = (otherKeyValue == null); // Since our hashcode was calculated from the original // non-null referant, the above check breaks the // hashcode/equals contract, as two cleared Referenced // objects could test equal but have different hashcodes. // We can reduce (not eliminate) the chance of this // happening by comparing hashcodes. if (result == true) { result = (this.hashCode() == otherKey.hashCode()); } // In any case, as our c'tor does not allow null referants // and Hashtable does not do equality checks between // existing keys, normal hashtable operations should never // result in an equals comparison between null referants } else { result = thisKeyValue.equals(otherKeyValue); } } return result; } } /** * WeakReference subclass that holds a hard reference to an * associated <code>value</code> and also makes accessible * the Referenced object holding it. */ private final static class WeakKey extends WeakReference { private final Referenced referenced; private WeakKey(Object key, ReferenceQueue queue, Referenced referenced) { super(key, queue); this.referenced = referenced; } private Referenced getReferenced() { return referenced; } } }