/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.flink.api.java; import org.apache.flink.annotation.PublicEvolving; import org.apache.flink.annotation.Public; import org.apache.flink.api.common.InvalidProgramException; import org.apache.flink.api.common.JobExecutionResult; import org.apache.flink.api.common.accumulators.SerializedListAccumulator; import org.apache.flink.api.common.functions.FilterFunction; import org.apache.flink.api.common.functions.FlatMapFunction; import org.apache.flink.api.common.functions.GroupCombineFunction; import org.apache.flink.api.common.functions.GroupReduceFunction; import org.apache.flink.api.common.functions.InvalidTypesException; import org.apache.flink.api.common.functions.MapFunction; import org.apache.flink.api.common.functions.MapPartitionFunction; import org.apache.flink.api.common.functions.Partitioner; import org.apache.flink.api.common.functions.ReduceFunction; import org.apache.flink.api.common.io.FileOutputFormat; import org.apache.flink.api.common.io.OutputFormat; import org.apache.flink.api.common.operators.Order; import org.apache.flink.api.common.operators.base.CrossOperatorBase.CrossHint; import org.apache.flink.api.common.operators.base.JoinOperatorBase.JoinHint; import org.apache.flink.api.common.operators.base.PartitionOperatorBase.PartitionMethod; import org.apache.flink.api.common.typeinfo.TypeInformation; import org.apache.flink.api.common.typeutils.TypeSerializer; import org.apache.flink.api.java.aggregation.Aggregations; import org.apache.flink.api.java.functions.FirstReducer; import org.apache.flink.api.java.functions.FormattingMapper; import org.apache.flink.api.java.functions.KeySelector; import org.apache.flink.api.java.functions.SelectByMaxFunction; import org.apache.flink.api.java.functions.SelectByMinFunction; import org.apache.flink.api.java.io.CsvOutputFormat; import org.apache.flink.api.java.io.PrintingOutputFormat; import org.apache.flink.api.java.io.TextOutputFormat; import org.apache.flink.api.java.io.TextOutputFormat.TextFormatter; import org.apache.flink.api.java.operators.AggregateOperator; import org.apache.flink.api.java.operators.CoGroupOperator; import org.apache.flink.api.java.operators.CoGroupOperator.CoGroupOperatorSets; import org.apache.flink.api.java.operators.CrossOperator; import org.apache.flink.api.java.operators.CustomUnaryOperation; import org.apache.flink.api.java.operators.DataSink; import org.apache.flink.api.java.operators.DeltaIteration; import org.apache.flink.api.java.operators.DistinctOperator; import org.apache.flink.api.java.operators.FilterOperator; import org.apache.flink.api.java.operators.FlatMapOperator; import org.apache.flink.api.java.operators.GroupCombineOperator; import org.apache.flink.api.java.operators.GroupReduceOperator; import org.apache.flink.api.java.operators.IterativeDataSet; import org.apache.flink.api.java.operators.JoinOperator.JoinOperatorSets; import org.apache.flink.api.common.operators.Keys; import org.apache.flink.api.java.operators.MapOperator; import org.apache.flink.api.java.operators.MapPartitionOperator; import org.apache.flink.api.java.operators.PartitionOperator; import org.apache.flink.api.java.operators.ProjectOperator; import org.apache.flink.api.java.operators.ProjectOperator.Projection; import org.apache.flink.api.java.operators.ReduceOperator; import org.apache.flink.api.java.operators.SortPartitionOperator; import org.apache.flink.api.java.operators.SortedGrouping; import org.apache.flink.api.java.operators.UnionOperator; import org.apache.flink.api.java.operators.UnsortedGrouping; import org.apache.flink.api.java.operators.join.JoinOperatorSetsBase; import org.apache.flink.api.java.operators.join.JoinType; import org.apache.flink.api.java.tuple.Tuple; import org.apache.flink.api.java.tuple.Tuple2; import org.apache.flink.api.java.typeutils.InputTypeConfigurable; import org.apache.flink.api.java.typeutils.MissingTypeInfo; import org.apache.flink.api.java.typeutils.TupleTypeInfo; import org.apache.flink.api.java.typeutils.TypeExtractor; import org.apache.flink.core.fs.FileSystem.WriteMode; import org.apache.flink.core.fs.Path; import org.apache.flink.util.AbstractID; import org.apache.flink.util.Preconditions; import java.io.IOException; import java.util.ArrayList; import java.util.List; /** * A DataSet represents a collection of elements of the same type.<br> * A DataSet can be transformed into another DataSet by applying a transformation as for example * <ul> * <li>{@link DataSet#map(org.apache.flink.api.common.functions.MapFunction)},</li> * <li>{@link DataSet#reduce(org.apache.flink.api.common.functions.ReduceFunction)},</li> * <li>{@link DataSet#join(DataSet)}, or</li> * <li>{@link DataSet#coGroup(DataSet)}.</li> * </ul> * * @param <T> The type of the DataSet, i.e., the type of the elements of the DataSet. */ @Public public abstract class DataSet<T> { protected final ExecutionEnvironment context; // NOTE: the type must not be accessed directly, but only via getType() private TypeInformation<T> type; private boolean typeUsed = false; protected DataSet(ExecutionEnvironment context, TypeInformation<T> typeInfo) { if (context == null) { throw new NullPointerException("context is null"); } if (typeInfo == null) { throw new NullPointerException("typeInfo is null"); } this.context = context; this.type = typeInfo; } /** * Returns the {@link ExecutionEnvironment} in which this DataSet is registered. * * @return The ExecutionEnvironment in which this DataSet is registered. * * @see ExecutionEnvironment */ public ExecutionEnvironment getExecutionEnvironment() { return this.context; } // -------------------------------------------------------------------------------------------- // Type Information handling // -------------------------------------------------------------------------------------------- /** * Tries to fill in the type information. Type information can be filled in later when the program uses * a type hint. This method checks whether the type information has ever been accessed before and does not * allow modifications if the type was accessed already. This ensures consistency by making sure different * parts of the operation do not assume different type information. * * @param typeInfo The type information to fill in. * * @throws IllegalStateException Thrown, if the type information has been accessed before. */ protected void fillInType(TypeInformation<T> typeInfo) { if (typeUsed) { throw new IllegalStateException("TypeInformation cannot be filled in for the type after it has been used. " + "Please make sure that the type info hints are the first call after the transformation function, " + "before any access to types or semantic properties, etc."); } this.type = typeInfo; } /** * Returns the {@link TypeInformation} for the type of this DataSet. * * @return The TypeInformation for the type of this DataSet. * * @see TypeInformation */ public TypeInformation<T> getType() { if (type instanceof MissingTypeInfo) { MissingTypeInfo typeInfo = (MissingTypeInfo) type; throw new InvalidTypesException("The return type of function '" + typeInfo.getFunctionName() + "' could not be determined automatically, due to type erasure. " + "You can give type information hints by using the returns(...) method on the result of " + "the transformation call, or by letting your function implement the 'ResultTypeQueryable' " + "interface.", typeInfo.getTypeException()); } typeUsed = true; return this.type; } public <F> F clean(F f) { if (getExecutionEnvironment().getConfig().isClosureCleanerEnabled()) { ClosureCleaner.clean(f, true); } else { ClosureCleaner.ensureSerializable(f); } return f; } // -------------------------------------------------------------------------------------------- // Filter & Transformations // -------------------------------------------------------------------------------------------- /** * Applies a Map transformation on this DataSet.<br> * The transformation calls a {@link org.apache.flink.api.common.functions.MapFunction} for each element of the DataSet. * Each MapFunction call returns exactly one element. * * @param mapper The MapFunction that is called for each element of the DataSet. * @return A MapOperator that represents the transformed DataSet. * * @see org.apache.flink.api.common.functions.MapFunction * @see org.apache.flink.api.common.functions.RichMapFunction * @see MapOperator */ public <R> MapOperator<T, R> map(MapFunction<T, R> mapper) { if (mapper == null) { throw new NullPointerException("Map function must not be null."); } String callLocation = Utils.getCallLocationName(); TypeInformation<R> resultType = TypeExtractor.getMapReturnTypes(mapper, getType(), callLocation, true); return new MapOperator<>(this, resultType, clean(mapper), callLocation); } /** * Applies a Map-style operation to the entire partition of the data. * The function is called once per parallel partition of the data, * and the entire partition is available through the given Iterator. * The number of elements that each instance of the MapPartition function * sees is non deterministic and depends on the parallelism of the operation. * * This function is intended for operations that cannot transform individual elements, * requires no grouping of elements. To transform individual elements, * the use of {@code map()} and {@code flatMap()} is preferable. * * @param mapPartition The MapPartitionFunction that is called for the full DataSet. * @return A MapPartitionOperator that represents the transformed DataSet. * * @see MapPartitionFunction * @see MapPartitionOperator */ public <R> MapPartitionOperator<T, R> mapPartition(MapPartitionFunction<T, R> mapPartition ){ if (mapPartition == null) { throw new NullPointerException("MapPartition function must not be null."); } String callLocation = Utils.getCallLocationName(); TypeInformation<R> resultType = TypeExtractor.getMapPartitionReturnTypes(mapPartition, getType(), callLocation, true); return new MapPartitionOperator<>(this, resultType, clean(mapPartition), callLocation); } /** * Applies a FlatMap transformation on a {@link DataSet}.<br> * The transformation calls a {@link org.apache.flink.api.common.functions.RichFlatMapFunction} for each element of the DataSet. * Each FlatMapFunction call can return any number of elements including none. * * @param flatMapper The FlatMapFunction that is called for each element of the DataSet. * @return A FlatMapOperator that represents the transformed DataSet. * * @see org.apache.flink.api.common.functions.RichFlatMapFunction * @see FlatMapOperator * @see DataSet */ public <R> FlatMapOperator<T, R> flatMap(FlatMapFunction<T, R> flatMapper) { if (flatMapper == null) { throw new NullPointerException("FlatMap function must not be null."); } String callLocation = Utils.getCallLocationName(); TypeInformation<R> resultType = TypeExtractor.getFlatMapReturnTypes(flatMapper, getType(), callLocation, true); return new FlatMapOperator<>(this, resultType, clean(flatMapper), callLocation); } /** * Applies a Filter transformation on a {@link DataSet}.<br> * The transformation calls a {@link org.apache.flink.api.common.functions.RichFilterFunction} for each element of the DataSet * and retains only those element for which the function returns true. Elements for * which the function returns false are filtered. * * @param filter The FilterFunction that is called for each element of the DataSet. * @return A FilterOperator that represents the filtered DataSet. * * @see org.apache.flink.api.common.functions.RichFilterFunction * @see FilterOperator * @see DataSet */ public FilterOperator<T> filter(FilterFunction<T> filter) { if (filter == null) { throw new NullPointerException("Filter function must not be null."); } return new FilterOperator<>(this, clean(filter), Utils.getCallLocationName()); } // -------------------------------------------------------------------------------------------- // Projections // -------------------------------------------------------------------------------------------- /** * Applies a Project transformation on a {@link Tuple} {@link DataSet}.<br> * <b>Note: Only Tuple DataSets can be projected using field indexes.</b><br> * The transformation projects each Tuple of the DataSet onto a (sub)set of fields.<br> * Additional fields can be added to the projection by calling {@link ProjectOperator#project(int[])}. * * <b>Note: With the current implementation, the Project transformation looses type information.</b> * * @param fieldIndexes The field indexes of the input tuple that are retained. * The order of fields in the output tuple corresponds to the order of field indexes. * @return A ProjectOperator that represents the projected DataSet. * * @see Tuple * @see DataSet * @see ProjectOperator */ public <OUT extends Tuple> ProjectOperator<?, OUT> project(int... fieldIndexes) { return new Projection<>(this, fieldIndexes).projectTupleX(); } // -------------------------------------------------------------------------------------------- // Non-grouped aggregations // -------------------------------------------------------------------------------------------- /** * Applies an Aggregate transformation on a non-grouped {@link Tuple} {@link DataSet}.<br> * <b>Note: Only Tuple DataSets can be aggregated.</b> * The transformation applies a built-in {@link Aggregations Aggregation} on a specified field * of a Tuple DataSet. Additional aggregation functions can be added to the resulting * {@link AggregateOperator} by calling {@link AggregateOperator#and(Aggregations, int)}. * * @param agg The built-in aggregation function that is computed. * @param field The index of the Tuple field on which the aggregation function is applied. * @return An AggregateOperator that represents the aggregated DataSet. * * @see Tuple * @see Aggregations * @see AggregateOperator * @see DataSet */ public AggregateOperator<T> aggregate(Aggregations agg, int field) { return new AggregateOperator<>(this, agg, field, Utils.getCallLocationName()); } /** * Syntactic sugar for aggregate (SUM, field) * @param field The index of the Tuple field on which the aggregation function is applied. * @return An AggregateOperator that represents the summed DataSet. * * @see org.apache.flink.api.java.operators.AggregateOperator */ public AggregateOperator<T> sum(int field) { return aggregate(Aggregations.SUM, field); } /** * Syntactic sugar for {@link #aggregate(Aggregations, int)} using {@link Aggregations#MAX} as * the aggregation function. * <p> * <strong>Note:</strong> This operation is not to be confused with {@link #maxBy(int...)}, * which selects one element with maximum value at the specified field positions. * * @param field The index of the Tuple field on which the aggregation function is applied. * @return An AggregateOperator that represents the max'ed DataSet. * * @see #aggregate(Aggregations, int) * @see #maxBy(int...) */ public AggregateOperator<T> max(int field) { return aggregate(Aggregations.MAX, field); } /** * Syntactic sugar for {@link #aggregate(Aggregations, int)} using {@link Aggregations#MIN} as * the aggregation function. * <p> * <strong>Note:</strong> This operation is not to be confused with {@link #minBy(int...)}, * which selects one element with the minimum value at the specified field positions. * * @param field The index of the Tuple field on which the aggregation function is applied. * @return An AggregateOperator that represents the min'ed DataSet. * * @see #aggregate(Aggregations, int) * @see #minBy(int...) */ public AggregateOperator<T> min(int field) { return aggregate(Aggregations.MIN, field); } /** * Convenience method to get the count (number of elements) of a DataSet. * * @return A long integer that represents the number of elements in the data set. */ public long count() throws Exception { final String id = new AbstractID().toString(); output(new Utils.CountHelper<T>(id)).name("count()"); JobExecutionResult res = getExecutionEnvironment().execute(); return res.<Long> getAccumulatorResult(id); } /** * Convenience method to get the elements of a DataSet as a List. * As DataSet can contain a lot of data, this method should be used with caution. * * @return A List containing the elements of the DataSet */ public List<T> collect() throws Exception { final String id = new AbstractID().toString(); final TypeSerializer<T> serializer = getType().createSerializer(getExecutionEnvironment().getConfig()); this.output(new Utils.CollectHelper<>(id, serializer)).name("collect()"); JobExecutionResult res = getExecutionEnvironment().execute(); ArrayList<byte[]> accResult = res.getAccumulatorResult(id); if (accResult != null) { try { return SerializedListAccumulator.deserializeList(accResult, serializer); } catch (ClassNotFoundException e) { throw new RuntimeException("Cannot find type class of collected data type.", e); } catch (IOException e) { throw new RuntimeException("Serialization error while deserializing collected data", e); } } else { throw new RuntimeException("The call to collect() could not retrieve the DataSet."); } } /** * Applies a Reduce transformation on a non-grouped {@link DataSet}.<br> * The transformation consecutively calls a {@link org.apache.flink.api.common.functions.RichReduceFunction} * until only a single element remains which is the result of the transformation. * A ReduceFunction combines two elements into one new element of the same type. * * @param reducer The ReduceFunction that is applied on the DataSet. * @return A ReduceOperator that represents the reduced DataSet. * * @see org.apache.flink.api.common.functions.RichReduceFunction * @see ReduceOperator * @see DataSet */ public ReduceOperator<T> reduce(ReduceFunction<T> reducer) { if (reducer == null) { throw new NullPointerException("Reduce function must not be null."); } return new ReduceOperator<>(this, clean(reducer), Utils.getCallLocationName()); } /** * Applies a GroupReduce transformation on a non-grouped {@link DataSet}.<br> * The transformation calls a {@link org.apache.flink.api.common.functions.RichGroupReduceFunction} once with the full DataSet. * The GroupReduceFunction can iterate over all elements of the DataSet and emit any * number of output elements including none. * * @param reducer The GroupReduceFunction that is applied on the DataSet. * @return A GroupReduceOperator that represents the reduced DataSet. * * @see org.apache.flink.api.common.functions.RichGroupReduceFunction * @see org.apache.flink.api.java.operators.GroupReduceOperator * @see DataSet */ public <R> GroupReduceOperator<T, R> reduceGroup(GroupReduceFunction<T, R> reducer) { if (reducer == null) { throw new NullPointerException("GroupReduce function must not be null."); } String callLocation = Utils.getCallLocationName(); TypeInformation<R> resultType = TypeExtractor.getGroupReduceReturnTypes(reducer, getType(), callLocation, true); return new GroupReduceOperator<>(this, resultType, clean(reducer), callLocation); } /** * Applies a GroupCombineFunction on a non-grouped {@link DataSet}. * A CombineFunction is similar to a GroupReduceFunction but does not perform a full data exchange. Instead, the * CombineFunction calls the combine method once per partition for combining a group of results. This * operator is suitable for combining values into an intermediate format before doing a proper groupReduce where * the data is shuffled across the node for further reduction. The GroupReduce operator can also be supplied with * a combiner by implementing the RichGroupReduce function. The combine method of the RichGroupReduce function * demands input and output type to be the same. The CombineFunction, on the other side, can have an arbitrary * output type. * @param combiner The GroupCombineFunction that is applied on the DataSet. * @return A GroupCombineOperator which represents the combined DataSet. */ public <R> GroupCombineOperator<T, R> combineGroup(GroupCombineFunction<T, R> combiner) { if (combiner == null) { throw new NullPointerException("GroupCombine function must not be null."); } String callLocation = Utils.getCallLocationName(); TypeInformation<R> resultType = TypeExtractor.getGroupCombineReturnTypes(combiner, getType(), callLocation, true); return new GroupCombineOperator<>(this, resultType, clean(combiner), callLocation); } /** * Selects an element with minimum value. * <p> * The minimum is computed over the specified fields in lexicographical order. * <p> * <strong>Example 1</strong>: Given a data set with elements <code>[0, 1], [1, 0]</code>, the * results will be: * <ul> * <li><code>minBy(0)</code>: <code>[0, 1]</code></li> * <li><code>minBy(1)</code>: <code>[1, 0]</code></li> * </ul> * <p> * <strong>Example 2</strong>: Given a data set with elements <code>[0, 0], [0, 1]</code>, the * results will be: * <ul> * <li><code>minBy(0, 1)</code>: <code>[0, 0]</code></li> * </ul> * <p> * If multiple values with minimum value at the specified fields exist, a random one will be * picked. * <p> * Internally, this operation is implemented as a {@link ReduceFunction}. * * @param fields Field positions to compute the minimum over * @return A {@link ReduceOperator} representing the minimum */ @SuppressWarnings({ "unchecked", "rawtypes" }) public ReduceOperator<T> minBy(int... fields) { if(!getType().isTupleType()) { throw new InvalidProgramException("DataSet#minBy(int...) only works on Tuple types."); } return new ReduceOperator<>(this, new SelectByMinFunction( (TupleTypeInfo) getType(), fields), Utils.getCallLocationName()); } /** * Selects an element with maximum value. * <p> * The maximum is computed over the specified fields in lexicographical order. * <p> * <strong>Example 1</strong>: Given a data set with elements <code>[0, 1], [1, 0]</code>, the * results will be: * <ul> * <li><code>maxBy(0)</code>: <code>[1, 0]</code></li> * <li><code>maxBy(1)</code>: <code>[0, 1]</code></li> * </ul> * <p> * <strong>Example 2</strong>: Given a data set with elements <code>[0, 0], [0, 1]</code>, the * results will be: * <ul> * <li><code>maxBy(0, 1)</code>: <code>[0, 1]</code></li> * </ul> * <p> * If multiple values with maximum value at the specified fields exist, a random one will be * picked. * <p> * Internally, this operation is implemented as a {@link ReduceFunction}. * * @param fields Field positions to compute the maximum over * @return A {@link ReduceOperator} representing the maximum */ @SuppressWarnings({ "unchecked", "rawtypes" }) public ReduceOperator<T> maxBy(int... fields) { if(!getType().isTupleType()) { throw new InvalidProgramException("DataSet#maxBy(int...) only works on Tuple types."); } return new ReduceOperator<>(this, new SelectByMaxFunction( (TupleTypeInfo) getType(), fields), Utils.getCallLocationName()); } /** * Returns a new set containing the first n elements in this {@link DataSet}.<br> * @param n The desired number of elements. * @return A ReduceGroupOperator that represents the DataSet containing the elements. */ public GroupReduceOperator<T, T> first(int n) { if(n < 1) { throw new InvalidProgramException("Parameter n of first(n) must be at least 1."); } return reduceGroup(new FirstReducer<T>(n)); } // -------------------------------------------------------------------------------------------- // distinct // -------------------------------------------------------------------------------------------- /** * Returns a distinct set of a {@link DataSet} using a {@link KeySelector} function. * <p> * The KeySelector function is called for each element of the DataSet and extracts a single key value on which the * decision is made if two items are distinct or not. * * @param keyExtractor The KeySelector function which extracts the key values from the DataSet on which the * distinction of the DataSet is decided. * @return A DistinctOperator that represents the distinct DataSet. */ public <K> DistinctOperator<T> distinct(KeySelector<T, K> keyExtractor) { TypeInformation<K> keyType = TypeExtractor.getKeySelectorTypes(keyExtractor, getType()); return new DistinctOperator<>(this, new Keys.SelectorFunctionKeys<>(keyExtractor, getType(), keyType), Utils.getCallLocationName()); } /** * Returns a distinct set of a {@link Tuple} {@link DataSet} using field position keys. * <p> * The field position keys specify the fields of Tuples on which the decision is made if two Tuples are distinct or * not. * <p> * Note: Field position keys can only be specified for Tuple DataSets. * * @param fields One or more field positions on which the distinction of the DataSet is decided. * @return A DistinctOperator that represents the distinct DataSet. */ public DistinctOperator<T> distinct(int... fields) { return new DistinctOperator<>(this, new Keys.ExpressionKeys<>(fields, getType()), Utils.getCallLocationName()); } /** * Returns a distinct set of a {@link DataSet} using expression keys. * <p> * The field expression keys specify the fields of a {@link org.apache.flink.api.common.typeutils.CompositeType} * (e.g., Tuple or Pojo type) on which the decision is made if two elements are distinct or not. * In case of a {@link org.apache.flink.api.common.typeinfo.AtomicType}, only the wildcard expression ("*") is valid. * * @param fields One or more field expressions on which the distinction of the DataSet is decided. * @return A DistinctOperator that represents the distinct DataSet. */ public DistinctOperator<T> distinct(String... fields) { return new DistinctOperator<>(this, new Keys.ExpressionKeys<>(fields, getType()), Utils.getCallLocationName()); } /** * Returns a distinct set of a {@link DataSet}. * <p> * If the input is a {@link org.apache.flink.api.common.typeutils.CompositeType} (Tuple or Pojo type), * distinct is performed on all fields and each field must be a key type * * @return A DistinctOperator that represents the distinct DataSet. */ public DistinctOperator<T> distinct() { return new DistinctOperator<>(this, null, Utils.getCallLocationName()); } // -------------------------------------------------------------------------------------------- // Grouping // -------------------------------------------------------------------------------------------- /** * Groups a {@link DataSet} using a {@link KeySelector} function. * The KeySelector function is called for each element of the DataSet and extracts a single * key value on which the DataSet is grouped. <br> * This method returns an {@link UnsortedGrouping} on which one of the following grouping transformation * can be applied. * <ul> * <li>{@link UnsortedGrouping#sortGroup(int, org.apache.flink.api.common.operators.Order)} to get a {@link SortedGrouping}. * <li>{@link UnsortedGrouping#aggregate(Aggregations, int)} to apply an Aggregate transformation. * <li>{@link UnsortedGrouping#reduce(org.apache.flink.api.common.functions.ReduceFunction)} to apply a Reduce transformation. * <li>{@link UnsortedGrouping#reduceGroup(org.apache.flink.api.common.functions.GroupReduceFunction)} to apply a GroupReduce transformation. * </ul> * * @param keyExtractor The KeySelector function which extracts the key values from the DataSet on which it is grouped. * @return An UnsortedGrouping on which a transformation needs to be applied to obtain a transformed DataSet. * * @see KeySelector * @see UnsortedGrouping * @see AggregateOperator * @see ReduceOperator * @see org.apache.flink.api.java.operators.GroupReduceOperator * @see DataSet */ public <K> UnsortedGrouping<T> groupBy(KeySelector<T, K> keyExtractor) { TypeInformation<K> keyType = TypeExtractor.getKeySelectorTypes(keyExtractor, getType()); return new UnsortedGrouping<>(this, new Keys.SelectorFunctionKeys<>(clean(keyExtractor), getType(), keyType)); } /** * Groups a {@link Tuple} {@link DataSet} using field position keys.<br> * <b>Note: Field position keys only be specified for Tuple DataSets.</b><br> * The field position keys specify the fields of Tuples on which the DataSet is grouped. * This method returns an {@link UnsortedGrouping} on which one of the following grouping transformation * can be applied. * <ul> * <li>{@link UnsortedGrouping#sortGroup(int, org.apache.flink.api.common.operators.Order)} to get a {@link SortedGrouping}. * <li>{@link UnsortedGrouping#aggregate(Aggregations, int)} to apply an Aggregate transformation. * <li>{@link UnsortedGrouping#reduce(org.apache.flink.api.common.functions.ReduceFunction)} to apply a Reduce transformation. * <li>{@link UnsortedGrouping#reduceGroup(org.apache.flink.api.common.functions.GroupReduceFunction)} to apply a GroupReduce transformation. * </ul> * * @param fields One or more field positions on which the DataSet will be grouped. * @return A Grouping on which a transformation needs to be applied to obtain a transformed DataSet. * * @see Tuple * @see UnsortedGrouping * @see AggregateOperator * @see ReduceOperator * @see org.apache.flink.api.java.operators.GroupReduceOperator * @see DataSet */ public UnsortedGrouping<T> groupBy(int... fields) { return new UnsortedGrouping<>(this, new Keys.ExpressionKeys<>(fields, getType())); } /** * Groups a {@link DataSet} using field expressions. A field expression is either the name of a public field * or a getter method with parentheses of the {@link DataSet}S underlying type. A dot can be used to drill down * into objects, as in {@code "field1.getInnerField2()" }. * This method returns an {@link UnsortedGrouping} on which one of the following grouping transformation * can be applied. * <ul> * <li>{@link UnsortedGrouping#sortGroup(int, org.apache.flink.api.common.operators.Order)} to get a {@link SortedGrouping}. * <li>{@link UnsortedGrouping#aggregate(Aggregations, int)} to apply an Aggregate transformation. * <li>{@link UnsortedGrouping#reduce(org.apache.flink.api.common.functions.ReduceFunction)} to apply a Reduce transformation. * <li>{@link UnsortedGrouping#reduceGroup(org.apache.flink.api.common.functions.GroupReduceFunction)} to apply a GroupReduce transformation. * </ul> * * @param fields One or more field expressions on which the DataSet will be grouped. * @return A Grouping on which a transformation needs to be applied to obtain a transformed DataSet. * * @see Tuple * @see UnsortedGrouping * @see AggregateOperator * @see ReduceOperator * @see org.apache.flink.api.java.operators.GroupReduceOperator * @see DataSet */ public UnsortedGrouping<T> groupBy(String... fields) { return new UnsortedGrouping<>(this, new Keys.ExpressionKeys<>(fields, getType())); } // -------------------------------------------------------------------------------------------- // Joining // -------------------------------------------------------------------------------------------- /** * Initiates a Join transformation. <br> * A Join transformation joins the elements of two * {@link DataSet DataSets} on key equality and provides multiple ways to combine * joining elements into one DataSet.<br> * * This method returns a {@link JoinOperatorSets} on which one of the {@code where} methods * can be called to define the join key of the first joining (i.e., this) DataSet. * * @param other The other DataSet with which this DataSet is joined. * @return A JoinOperatorSets to continue the definition of the Join transformation. * * @see JoinOperatorSets * @see DataSet */ public <R> JoinOperatorSets<T, R> join(DataSet<R> other) { return new JoinOperatorSets<>(this, other); } /** * Initiates a Join transformation. <br> * A Join transformation joins the elements of two * {@link DataSet DataSets} on key equality and provides multiple ways to combine * joining elements into one DataSet.<br> * * This method returns a {@link JoinOperatorSets} on which one of the {@code where} methods * can be called to define the join key of the first joining (i.e., this) DataSet. * * @param other The other DataSet with which this DataSet is joined. * @param strategy The strategy that should be used execute the join. If {@code null} is given, then the * optimizer will pick the join strategy. * @return A JoinOperatorSets to continue the definition of the Join transformation. * * @see JoinOperatorSets * @see DataSet */ public <R> JoinOperatorSets<T, R> join(DataSet<R> other, JoinHint strategy) { return new JoinOperatorSets<>(this, other, strategy); } /** * Initiates a Join transformation. <br> * A Join transformation joins the elements of two * {@link DataSet DataSets} on key equality and provides multiple ways to combine * joining elements into one DataSet.<br> * This method also gives the hint to the optimizer that the second DataSet to join is much * smaller than the first one.<br> * This method returns a {@link JoinOperatorSets} on which * {@link JoinOperatorSets#where(String...)} needs to be called to define the join key of the first * joining (i.e., this) DataSet. * * @param other The other DataSet with which this DataSet is joined. * @return A JoinOperatorSets to continue the definition of the Join transformation. * * @see JoinOperatorSets * @see DataSet */ public <R> JoinOperatorSets<T, R> joinWithTiny(DataSet<R> other) { return new JoinOperatorSets<>(this, other, JoinHint.BROADCAST_HASH_SECOND); } /** * Initiates a Join transformation.<br> * A Join transformation joins the elements of two * {@link DataSet DataSets} on key equality and provides multiple ways to combine * joining elements into one DataSet.<br> * This method also gives the hint to the optimizer that the second DataSet to join is much * larger than the first one.<br> * This method returns a {@link JoinOperatorSets} on which one of the {@code where} methods * can be called to define the join key of the first joining (i.e., this) DataSet. * * @param other The other DataSet with which this DataSet is joined. * @return A JoinOperatorSet to continue the definition of the Join transformation. * * @see JoinOperatorSets * @see DataSet */ public <R> JoinOperatorSets<T, R> joinWithHuge(DataSet<R> other) { return new JoinOperatorSets<>(this, other, JoinHint.BROADCAST_HASH_FIRST); } /** * Initiates a Left Outer Join transformation.<br> * An Outer Join transformation joins two elements of two * {@link DataSet DataSets} on key equality and provides multiple ways to combine * joining elements into one DataSet.<br> * Elements of the <b>left</b> DataSet (i.e. {@code this}) that do not have a matching * element on the other side are joined with {@code null} and emitted to the * resulting DataSet. * * @param other The other DataSet with which this DataSet is joined. * @return A JoinOperatorSet to continue the definition of the Join transformation. * * @see org.apache.flink.api.java.operators.join.JoinOperatorSetsBase * @see DataSet */ public <R> JoinOperatorSetsBase<T, R> leftOuterJoin(DataSet<R> other) { return new JoinOperatorSetsBase<>(this, other, JoinHint.OPTIMIZER_CHOOSES, JoinType.LEFT_OUTER); } /** * Initiates a Left Outer Join transformation.<br> * An Outer Join transformation joins two elements of two * {@link DataSet DataSets} on key equality and provides multiple ways to combine * joining elements into one DataSet.<br> * Elements of the <b>left</b> DataSet (i.e. {@code this}) that do not have a matching * element on the other side are joined with {@code null} and emitted to the * resulting DataSet. * * @param other The other DataSet with which this DataSet is joined. * @param strategy The strategy that should be used execute the join. If {@code null} is given, then the * optimizer will pick the join strategy. * @return A JoinOperatorSet to continue the definition of the Join transformation. * * @see org.apache.flink.api.java.operators.join.JoinOperatorSetsBase * @see DataSet */ public <R> JoinOperatorSetsBase<T, R> leftOuterJoin(DataSet<R> other, JoinHint strategy) { switch(strategy) { case OPTIMIZER_CHOOSES: case REPARTITION_SORT_MERGE: case REPARTITION_HASH_FIRST: case REPARTITION_HASH_SECOND: case BROADCAST_HASH_SECOND: return new JoinOperatorSetsBase<>(this, other, strategy, JoinType.LEFT_OUTER); default: throw new InvalidProgramException("Invalid JoinHint for LeftOuterJoin: "+strategy); } } /** * Initiates a Right Outer Join transformation.<br> * An Outer Join transformation joins two elements of two * {@link DataSet DataSets} on key equality and provides multiple ways to combine * joining elements into one DataSet.<br> * Elements of the <b>right</b> DataSet (i.e. {@code other}) that do not have a matching * element on {@code this} side are joined with {@code null} and emitted to the * resulting DataSet. * * @param other The other DataSet with which this DataSet is joined. * @return A JoinOperatorSet to continue the definition of the Join transformation. * * @see org.apache.flink.api.java.operators.join.JoinOperatorSetsBase * @see DataSet */ public <R> JoinOperatorSetsBase<T, R> rightOuterJoin(DataSet<R> other) { return new JoinOperatorSetsBase<>(this, other, JoinHint.OPTIMIZER_CHOOSES, JoinType.RIGHT_OUTER); } /** * Initiates a Right Outer Join transformation.<br> * An Outer Join transformation joins two elements of two * {@link DataSet DataSets} on key equality and provides multiple ways to combine * joining elements into one DataSet.<br> * Elements of the <b>right</b> DataSet (i.e. {@code other}) that do not have a matching * element on {@code this} side are joined with {@code null} and emitted to the * resulting DataSet. * * @param other The other DataSet with which this DataSet is joined. * @param strategy The strategy that should be used execute the join. If {@code null} is given, then the * optimizer will pick the join strategy. * @return A JoinOperatorSet to continue the definition of the Join transformation. * * @see org.apache.flink.api.java.operators.join.JoinOperatorSetsBase * @see DataSet */ public <R> JoinOperatorSetsBase<T, R> rightOuterJoin(DataSet<R> other, JoinHint strategy) { switch(strategy) { case OPTIMIZER_CHOOSES: case REPARTITION_SORT_MERGE: case REPARTITION_HASH_FIRST: case REPARTITION_HASH_SECOND: case BROADCAST_HASH_FIRST: return new JoinOperatorSetsBase<>(this, other, strategy, JoinType.RIGHT_OUTER); default: throw new InvalidProgramException("Invalid JoinHint for RightOuterJoin: "+strategy); } } /** * Initiates a Full Outer Join transformation.<br> * An Outer Join transformation joins two elements of two * {@link DataSet DataSets} on key equality and provides multiple ways to combine * joining elements into one DataSet.<br> * Elements of <b>both</b> DataSets that do not have a matching * element on the opposing side are joined with {@code null} and emitted to the * resulting DataSet. * * @param other The other DataSet with which this DataSet is joined. * @return A JoinOperatorSet to continue the definition of the Join transformation. * * @see org.apache.flink.api.java.operators.join.JoinOperatorSetsBase * @see DataSet */ public <R> JoinOperatorSetsBase<T, R> fullOuterJoin(DataSet<R> other) { return new JoinOperatorSetsBase<>(this, other, JoinHint.OPTIMIZER_CHOOSES, JoinType.FULL_OUTER); } /** * Initiates a Full Outer Join transformation.<br> * An Outer Join transformation joins two elements of two * {@link DataSet DataSets} on key equality and provides multiple ways to combine * joining elements into one DataSet.<br> * Elements of <b>both</b> DataSets that do not have a matching * element on the opposing side are joined with {@code null} and emitted to the * resulting DataSet. * * @param other The other DataSet with which this DataSet is joined. * @param strategy The strategy that should be used execute the join. If {@code null} is given, then the * optimizer will pick the join strategy. * @return A JoinOperatorSet to continue the definition of the Join transformation. * * @see org.apache.flink.api.java.operators.join.JoinOperatorSetsBase * @see DataSet */ public <R> JoinOperatorSetsBase<T, R> fullOuterJoin(DataSet<R> other, JoinHint strategy) { switch(strategy) { case OPTIMIZER_CHOOSES: case REPARTITION_SORT_MERGE: case REPARTITION_HASH_FIRST: case REPARTITION_HASH_SECOND: return new JoinOperatorSetsBase<>(this, other, strategy, JoinType.FULL_OUTER); default: throw new InvalidProgramException("Invalid JoinHint for FullOuterJoin: "+strategy); } } // -------------------------------------------------------------------------------------------- // Co-Grouping // -------------------------------------------------------------------------------------------- /** * Initiates a CoGroup transformation.<br> * A CoGroup transformation combines the elements of * two {@link DataSet DataSets} into one DataSet. It groups each DataSet individually on a key and * gives groups of both DataSets with equal keys together into a {@link org.apache.flink.api.common.functions.RichCoGroupFunction}. * If a DataSet has a group with no matching key in the other DataSet, the CoGroupFunction * is called with an empty group for the non-existing group.<br> * The CoGroupFunction can iterate over the elements of both groups and return any number * of elements including none.<br> * This method returns a {@link CoGroupOperatorSets} on which one of the {@code where} methods * can be called to define the join key of the first joining (i.e., this) DataSet. * * @param other The other DataSet of the CoGroup transformation. * @return A CoGroupOperatorSets to continue the definition of the CoGroup transformation. * * @see CoGroupOperatorSets * @see CoGroupOperator * @see DataSet */ public <R> CoGroupOperator.CoGroupOperatorSets<T, R> coGroup(DataSet<R> other) { return new CoGroupOperator.CoGroupOperatorSets<>(this, other); } // -------------------------------------------------------------------------------------------- // Cross // -------------------------------------------------------------------------------------------- /** * Continues a Join transformation and defines the {@link Tuple} fields of the second join * {@link DataSet} that should be used as join keys.<br> * <b>Note: Fields can only be selected as join keys on Tuple DataSets.</b><br> * * The resulting {@link DefaultJoin} wraps each pair of joining elements into a {@link Tuple2}, with * the element of the first input being the first field of the tuple and the element of the * second input being the second field of the tuple. * * @param fields The indexes of the Tuple fields of the second join DataSet that should be used as keys. * @return A DefaultJoin that represents the joined DataSet. */ /** * Initiates a Cross transformation.<br> * A Cross transformation combines the elements of two * {@link DataSet DataSets} into one DataSet. It builds all pair combinations of elements of * both DataSets, i.e., it builds a Cartesian product. * * <p> * The resulting {@link org.apache.flink.api.java.operators.CrossOperator.DefaultCross} wraps each pair of crossed elements into a {@link Tuple2}, with * the element of the first input being the first field of the tuple and the element of the * second input being the second field of the tuple. * * <p> * Call {@link org.apache.flink.api.java.operators.CrossOperator.DefaultCross#with(org.apache.flink.api.common.functions.CrossFunction)} to define a * {@link org.apache.flink.api.common.functions.CrossFunction} which is called for * each pair of crossed elements. The CrossFunction returns a exactly one element for each pair of input elements.<br> * * @param other The other DataSet with which this DataSet is crossed. * @return A DefaultCross that returns a Tuple2 for each pair of crossed elements. * * @see org.apache.flink.api.java.operators.CrossOperator.DefaultCross * @see org.apache.flink.api.common.functions.CrossFunction * @see DataSet * @see Tuple2 */ public <R> CrossOperator.DefaultCross<T, R> cross(DataSet<R> other) { return new CrossOperator.DefaultCross<>(this, other, CrossHint.OPTIMIZER_CHOOSES, Utils.getCallLocationName()); } /** * Initiates a Cross transformation.<br> * A Cross transformation combines the elements of two * {@link DataSet DataSets} into one DataSet. It builds all pair combinations of elements of * both DataSets, i.e., it builds a Cartesian product. * This method also gives the hint to the optimizer that the second DataSet to cross is much * smaller than the first one. * * <p> * The resulting {@link org.apache.flink.api.java.operators.CrossOperator.DefaultCross} wraps each pair of crossed elements into a {@link Tuple2}, with * the element of the first input being the first field of the tuple and the element of the * second input being the second field of the tuple. * * <p> * Call {@link org.apache.flink.api.java.operators.CrossOperator.DefaultCross#with(org.apache.flink.api.common.functions.CrossFunction)} to define a * {@link org.apache.flink.api.common.functions.CrossFunction} which is called for * each pair of crossed elements. The CrossFunction returns a exactly one element for each pair of input elements.<br> * * @param other The other DataSet with which this DataSet is crossed. * @return A DefaultCross that returns a Tuple2 for each pair of crossed elements. * * @see org.apache.flink.api.java.operators.CrossOperator.DefaultCross * @see org.apache.flink.api.common.functions.CrossFunction * @see DataSet * @see Tuple2 */ public <R> CrossOperator.DefaultCross<T, R> crossWithTiny(DataSet<R> other) { return new CrossOperator.DefaultCross<>(this, other, CrossHint.SECOND_IS_SMALL, Utils.getCallLocationName()); } /** * Initiates a Cross transformation.<br> * A Cross transformation combines the elements of two * {@link DataSet DataSets} into one DataSet. It builds all pair combinations of elements of * both DataSets, i.e., it builds a Cartesian product. * This method also gives the hint to the optimizer that the second DataSet to cross is much * larger than the first one. * * <p> * The resulting {@link org.apache.flink.api.java.operators.CrossOperator.DefaultCross} wraps each pair of crossed elements into a {@link Tuple2}, with * the element of the first input being the first field of the tuple and the element of the * second input being the second field of the tuple. * * <p> * Call {@link org.apache.flink.api.java.operators.CrossOperator.DefaultCross#with(org.apache.flink.api.common.functions.CrossFunction)} to define a * {@link org.apache.flink.api.common.functions.CrossFunction} which is called for * each pair of crossed elements. The CrossFunction returns a exactly one element for each pair of input elements.<br> * * @param other The other DataSet with which this DataSet is crossed. * @return A DefaultCross that returns a Tuple2 for each pair of crossed elements. * * @see org.apache.flink.api.java.operators.CrossOperator.DefaultCross * @see org.apache.flink.api.common.functions.CrossFunction * @see DataSet * @see Tuple2 */ public <R> CrossOperator.DefaultCross<T, R> crossWithHuge(DataSet<R> other) { return new CrossOperator.DefaultCross<>(this, other, CrossHint.FIRST_IS_SMALL, Utils.getCallLocationName()); } // -------------------------------------------------------------------------------------------- // Iterations // -------------------------------------------------------------------------------------------- /** * Initiates an iterative part of the program that executes multiple times and feeds back data sets. * The iterative part needs to be closed by calling {@link org.apache.flink.api.java.operators.IterativeDataSet#closeWith(DataSet)}. The data set * given to the {@code closeWith(DataSet)} method is the data set that will be fed back and used as the input * to the next iteration. The return value of the {@code closeWith(DataSet)} method is the resulting * data set after the iteration has terminated. * <p> * An example of an iterative computation is as follows: * * <pre> * {@code * DataSet<Double> input = ...; * * DataSet<Double> startOfIteration = input.iterate(10); * DataSet<Double> toBeFedBack = startOfIteration * .map(new MyMapper()) * .groupBy(...).reduceGroup(new MyReducer()); * DataSet<Double> result = startOfIteration.closeWith(toBeFedBack); * } * </pre> * <p> * The iteration has a maximum number of times that it executes. A dynamic termination can be realized by using a * termination criterion (see {@link org.apache.flink.api.java.operators.IterativeDataSet#closeWith(DataSet, DataSet)}). * * @param maxIterations The maximum number of times that the iteration is executed. * @return An IterativeDataSet that marks the start of the iterative part and needs to be closed by * {@link org.apache.flink.api.java.operators.IterativeDataSet#closeWith(DataSet)}. * * @see org.apache.flink.api.java.operators.IterativeDataSet */ public IterativeDataSet<T> iterate(int maxIterations) { return new IterativeDataSet<>(getExecutionEnvironment(), getType(), this, maxIterations); } /** * Initiates a delta iteration. A delta iteration is similar to a regular iteration (as started by {@link #iterate(int)}, * but maintains state across the individual iteration steps. The Solution set, which represents the current state * at the beginning of each iteration can be obtained via {@link org.apache.flink.api.java.operators.DeltaIteration#getSolutionSet()} ()}. * It can be be accessed by joining (or CoGrouping) with it. The DataSet that represents the workset of an iteration * can be obtained via {@link org.apache.flink.api.java.operators.DeltaIteration#getWorkset()}. * The solution set is updated by producing a delta for it, which is merged into the solution set at the end of each * iteration step. * <p> * The delta iteration must be closed by calling {@link org.apache.flink.api.java.operators.DeltaIteration#closeWith(DataSet, DataSet)}. The two * parameters are the delta for the solution set and the new workset (the data set that will be fed back). * The return value of the {@code closeWith(DataSet, DataSet)} method is the resulting * data set after the iteration has terminated. Delta iterations terminate when the feed back data set * (the workset) is empty. In addition, a maximum number of steps is given as a fall back termination guard. * <p> * Elements in the solution set are uniquely identified by a key. When merging the solution set delta, contained elements * with the same key are replaced. * <p> * <b>NOTE:</b> Delta iterations currently support only tuple valued data types. This restriction * will be removed in the future. The key is specified by the tuple position. * <p> * A code example for a delta iteration is as follows * <pre> * {@code * DeltaIteration<Tuple2<Long, Long>, Tuple2<Long, Long>> iteration = * initialState.iterateDelta(initialFeedbackSet, 100, 0); * * DataSet<Tuple2<Long, Long>> delta = iteration.groupBy(0).aggregate(Aggregations.AVG, 1) * .join(iteration.getSolutionSet()).where(0).equalTo(0) * .flatMap(new ProjectAndFilter()); * * DataSet<Tuple2<Long, Long>> feedBack = delta.join(someOtherSet).where(...).equalTo(...).with(...); * * // close the delta iteration (delta and new workset are identical) * DataSet<Tuple2<Long, Long>> result = iteration.closeWith(delta, feedBack); * } * </pre> * * @param workset The initial version of the data set that is fed back to the next iteration step (the workset). * @param maxIterations The maximum number of iteration steps, as a fall back safeguard. * @param keyPositions The position of the tuple fields that is used as the key of the solution set. * * @return The DeltaIteration that marks the start of a delta iteration. * * @see org.apache.flink.api.java.operators.DeltaIteration */ public <R> DeltaIteration<T, R> iterateDelta(DataSet<R> workset, int maxIterations, int... keyPositions) { Preconditions.checkNotNull(workset); Preconditions.checkNotNull(keyPositions); Keys.ExpressionKeys<T> keys = new Keys.ExpressionKeys<>(keyPositions, getType()); return new DeltaIteration<>(getExecutionEnvironment(), getType(), this, workset, keys, maxIterations); } // -------------------------------------------------------------------------------------------- // Custom Operators // ------------------------------------------------------------------------------------------- /** * Runs a {@link CustomUnaryOperation} on the data set. Custom operations are typically complex * operators that are composed of multiple steps. * * @param operation The operation to run. * @return The data set produced by the operation. */ public <X> DataSet<X> runOperation(CustomUnaryOperation<T, X> operation) { Preconditions.checkNotNull(operation, "The custom operator must not be null."); operation.setInput(this); return operation.createResult(); } // -------------------------------------------------------------------------------------------- // Union // -------------------------------------------------------------------------------------------- /** * Creates a union of this DataSet with an other DataSet. The other DataSet must be of the same data type. * * @param other The other DataSet which is unioned with the current DataSet. * @return The resulting DataSet. */ public UnionOperator<T> union(DataSet<T> other){ return new UnionOperator<>(this, other, Utils.getCallLocationName()); } // -------------------------------------------------------------------------------------------- // Partitioning // -------------------------------------------------------------------------------------------- /** * Hash-partitions a DataSet on the specified key fields. * <p> * <b>Important:</b>This operation shuffles the whole DataSet over the network and can take significant amount of time. * * @param fields The field indexes on which the DataSet is hash-partitioned. * @return The partitioned DataSet. */ public PartitionOperator<T> partitionByHash(int... fields) { return new PartitionOperator<>(this, PartitionMethod.HASH, new Keys.ExpressionKeys<>(fields, getType()), Utils.getCallLocationName()); } /** * Hash-partitions a DataSet on the specified key fields. * <p> * <b>Important:</b>This operation shuffles the whole DataSet over the network and can take significant amount of time. * * @param fields The field expressions on which the DataSet is hash-partitioned. * @return The partitioned DataSet. */ public PartitionOperator<T> partitionByHash(String... fields) { return new PartitionOperator<>(this, PartitionMethod.HASH, new Keys.ExpressionKeys<>(fields, getType()), Utils.getCallLocationName()); } /** * Partitions a DataSet using the specified KeySelector. * <p> * <b>Important:</b>This operation shuffles the whole DataSet over the network and can take significant amount of time. * * @param keyExtractor The KeyExtractor with which the DataSet is hash-partitioned. * @return The partitioned DataSet. * * @see KeySelector */ public <K extends Comparable<K>> PartitionOperator<T> partitionByHash(KeySelector<T, K> keyExtractor) { final TypeInformation<K> keyType = TypeExtractor.getKeySelectorTypes(keyExtractor, getType()); return new PartitionOperator<>(this, PartitionMethod.HASH, new Keys.SelectorFunctionKeys<>(clean(keyExtractor), this.getType(), keyType), Utils.getCallLocationName()); } /** * Range-partitions a DataSet on the specified key fields. * <p> * <b>Important:</b>This operation requires an extra pass over the DataSet to compute the range boundaries and * shuffles the whole DataSet over the network. This can take significant amount of time. * * @param fields The field indexes on which the DataSet is range-partitioned. * @return The partitioned DataSet. */ public PartitionOperator<T> partitionByRange(int... fields) { return new PartitionOperator<>(this, PartitionMethod.RANGE, new Keys.ExpressionKeys<>(fields, getType()), Utils.getCallLocationName()); } /** * Range-partitions a DataSet on the specified key fields. * <p> * <b>Important:</b>This operation requires an extra pass over the DataSet to compute the range boundaries and * shuffles the whole DataSet over the network. This can take significant amount of time. * * @param fields The field expressions on which the DataSet is range-partitioned. * @return The partitioned DataSet. */ public PartitionOperator<T> partitionByRange(String... fields) { return new PartitionOperator<>(this, PartitionMethod.RANGE, new Keys.ExpressionKeys<>(fields, getType()), Utils.getCallLocationName()); } /** * Range-partitions a DataSet using the specified KeySelector. * <p> * <b>Important:</b>This operation requires an extra pass over the DataSet to compute the range boundaries and * shuffles the whole DataSet over the network. This can take significant amount of time. * * @param keyExtractor The KeyExtractor with which the DataSet is range-partitioned. * @return The partitioned DataSet. * * @see KeySelector */ public <K extends Comparable<K>> PartitionOperator<T> partitionByRange(KeySelector<T, K> keyExtractor) { final TypeInformation<K> keyType = TypeExtractor.getKeySelectorTypes(keyExtractor, getType()); return new PartitionOperator<>(this, PartitionMethod.RANGE, new Keys.SelectorFunctionKeys<>(clean(keyExtractor), this.getType(), keyType), Utils.getCallLocationName()); } /** * Partitions a tuple DataSet on the specified key fields using a custom partitioner. * This method takes the key position to partition on, and a partitioner that accepts the key type. * <p> * Note: This method works only on single field keys. * * @param partitioner The partitioner to assign partitions to keys. * @param field The field index on which the DataSet is to partitioned. * @return The partitioned DataSet. */ public <K> PartitionOperator<T> partitionCustom(Partitioner<K> partitioner, int field) { return new PartitionOperator<>(this, new Keys.ExpressionKeys<>(new int[] {field}, getType()), clean(partitioner), Utils.getCallLocationName()); } /** * Partitions a POJO DataSet on the specified key fields using a custom partitioner. * This method takes the key expression to partition on, and a partitioner that accepts the key type. * <p> * Note: This method works only on single field keys. * * @param partitioner The partitioner to assign partitions to keys. * @param field The field index on which the DataSet is to partitioned. * @return The partitioned DataSet. */ public <K> PartitionOperator<T> partitionCustom(Partitioner<K> partitioner, String field) { return new PartitionOperator<>(this, new Keys.ExpressionKeys<>(new String[] {field}, getType()), clean(partitioner), Utils.getCallLocationName()); } /** * Partitions a DataSet on the key returned by the selector, using a custom partitioner. * This method takes the key selector to get the key to partition on, and a partitioner that * accepts the key type. * <p> * Note: This method works only on single field keys, i.e. the selector cannot return tuples * of fields. * * @param partitioner The partitioner to assign partitions to keys. * @param keyExtractor The KeyExtractor with which the DataSet is partitioned. * @return The partitioned DataSet. * * @see KeySelector */ public <K extends Comparable<K>> PartitionOperator<T> partitionCustom(Partitioner<K> partitioner, KeySelector<T, K> keyExtractor) { final TypeInformation<K> keyType = TypeExtractor.getKeySelectorTypes(keyExtractor, getType()); return new PartitionOperator<>(this, new Keys.SelectorFunctionKeys<>(keyExtractor, getType(), keyType), clean(partitioner), Utils.getCallLocationName()); } /** * Enforces a re-balancing of the DataSet, i.e., the DataSet is evenly distributed over all parallel instances of the * following task. This can help to improve performance in case of heavy data skew and compute intensive operations. * <p> * <b>Important:</b>This operation shuffles the whole DataSet over the network and can take significant amount of time. * * @return The re-balanced DataSet. */ public PartitionOperator<T> rebalance() { return new PartitionOperator<>(this, PartitionMethod.REBALANCE, Utils.getCallLocationName()); } // -------------------------------------------------------------------------------------------- // Sorting // -------------------------------------------------------------------------------------------- /** * Locally sorts the partitions of the DataSet on the specified field in the specified order. * DataSet can be sorted on multiple fields by chaining sortPartition() calls. * * @param field The field index on which the DataSet is sorted. * @param order The order in which the DataSet is sorted. * @return The DataSet with sorted local partitions. */ public SortPartitionOperator<T> sortPartition(int field, Order order) { return new SortPartitionOperator<>(this, field, order, Utils.getCallLocationName()); } /** * Locally sorts the partitions of the DataSet on the specified field in the specified order. * DataSet can be sorted on multiple fields by chaining sortPartition() calls. * * @param field The field expression referring to the field on which the DataSet is sorted. * @param order The order in which the DataSet is sorted. * @return The DataSet with sorted local partitions. */ public SortPartitionOperator<T> sortPartition(String field, Order order) { return new SortPartitionOperator<>(this, field, order, Utils.getCallLocationName()); } /** * Locally sorts the partitions of the DataSet on the extracted key in the specified order. * The DataSet can be sorted on multiple values by returning a tuple from the KeySelector. * * Note that no additional sort keys can be appended to a KeySelector sort keys. To sort * the partitions by multiple values using KeySelector, the KeySelector must return a tuple * consisting of the values. * * @param keyExtractor The KeySelector function which extracts the key values from the DataSet * on which the DataSet is sorted. * @param order The order in which the DataSet is sorted. * @return The DataSet with sorted local partitions. */ public <K> SortPartitionOperator<T> sortPartition(KeySelector<T, K> keyExtractor, Order order) { final TypeInformation<K> keyType = TypeExtractor.getKeySelectorTypes(keyExtractor, getType()); return new SortPartitionOperator<>(this, new Keys.SelectorFunctionKeys<>(clean(keyExtractor), getType(), keyType), order, Utils.getCallLocationName()); } // -------------------------------------------------------------------------------------------- // Top-K // -------------------------------------------------------------------------------------------- // -------------------------------------------------------------------------------------------- // Result writing // -------------------------------------------------------------------------------------------- /** * Writes a DataSet as text file(s) to the specified location.<br> * For each element of the DataSet the result of {@link Object#toString()} is written.<br/> * <br/> * <span class="strong">Output files and directories</span><br/> * What output how writeAsText() method produces is depending on other circumstance * <ul> * <li> * A directory is created and multiple files are written underneath. (Default behavior)<br/> * This sink creates a directory called "path1", and files "1", "2" ... are writen underneath depending on <a href="https://flink.apache.org/faq.html#what-is-the-parallelism-how-do-i-set-it">parallelism</a> * <pre>{@code . * └── path1/ * ├── 1 * ├── 2 * └── ...}</pre> * Code Example * <pre>{@code dataset.writeAsText("file:///path1");}</pre> * </li> * <li> * A single file called "path1" is created when parallelism is set to 1 * <pre>{@code . * └── path1 }</pre> * Code Example * <pre>{@code // Parallelism is set to only this particular operation *dataset.writeAsText("file:///path1").setParallelism(1); * * // This will creates the same effect but note all operators' parallelism are set to one *env.setParallelism(1); *... *dataset.writeAsText("file:///path1"); }</pre> * </li> * <li> * A directory is always created when <a href="https://ci.apache.org/projects/flink/flink-docs-master/setup/config.html#file-systems">fs.output.always-create-directory</a> * is set to true in flink-conf.yaml file, even when parallelism is set to 1. * <pre>{@code . * └── path1/ * └── 1 }</pre> * Code Example * <pre>{@code // fs.output.always-create-directory = true *dataset.writeAsText("file:///path1").setParallelism(1); }</pre> * </li> * </ul> * * @param filePath The path pointing to the location the text file or files under the directory is written to. * @return The DataSink that writes the DataSet. * * @see TextOutputFormat */ public DataSink<T> writeAsText(String filePath) { return output(new TextOutputFormat<T>(new Path(filePath))); } /** * Writes a DataSet as text file(s) to the specified location.<br> * For each element of the DataSet the result of {@link Object#toString()} is written. * * @param filePath The path pointing to the location the text file is written to. * @param writeMode Control the behavior for existing files. Options are NO_OVERWRITE and OVERWRITE. * @return The DataSink that writes the DataSet. * * @see TextOutputFormat * @see DataSet#writeAsText(String) Output files and directories */ public DataSink<T> writeAsText(String filePath, WriteMode writeMode) { TextOutputFormat<T> tof = new TextOutputFormat<>(new Path(filePath)); tof.setWriteMode(writeMode); return output(tof); } /** * Writes a DataSet as text file(s) to the specified location.<br> * For each element of the DataSet the result of {@link TextFormatter#format(Object)} is written. * * @param filePath The path pointing to the location the text file is written to. * @param formatter formatter that is applied on every element of the DataSet. * @return The DataSink that writes the DataSet. * * @see TextOutputFormat * @see DataSet#writeAsText(String) Output files and directories */ public DataSink<String> writeAsFormattedText(String filePath, TextFormatter<T> formatter) { return map(new FormattingMapper<>(clean(formatter))).writeAsText(filePath); } /** * Writes a DataSet as text file(s) to the specified location.<br> * For each element of the DataSet the result of {@link TextFormatter#format(Object)} is written. * * @param filePath The path pointing to the location the text file is written to. * @param writeMode Control the behavior for existing files. Options are NO_OVERWRITE and OVERWRITE. * @param formatter formatter that is applied on every element of the DataSet. * @return The DataSink that writes the DataSet. * * @see TextOutputFormat * @see DataSet#writeAsText(String) Output files and directories */ public DataSink<String> writeAsFormattedText(String filePath, WriteMode writeMode, TextFormatter<T> formatter) { return map(new FormattingMapper<>(clean(formatter))).writeAsText(filePath, writeMode); } /** * Writes a {@link Tuple} DataSet as CSV file(s) to the specified location.<br> * <b>Note: Only a Tuple DataSet can written as a CSV file.</b><br> * For each Tuple field the result of {@link Object#toString()} is written. * Tuple fields are separated by the default field delimiter {@code "comma" (,)}.<br> * Tuples are are separated by the newline character ({@code \n}). * * @param filePath The path pointing to the location the CSV file is written to. * @return The DataSink that writes the DataSet. * * @see Tuple * @see CsvOutputFormat * @see DataSet#writeAsText(String) Output files and directories */ public DataSink<T> writeAsCsv(String filePath) { return writeAsCsv(filePath, CsvOutputFormat.DEFAULT_LINE_DELIMITER, CsvOutputFormat.DEFAULT_FIELD_DELIMITER); } /** * Writes a {@link Tuple} DataSet as CSV file(s) to the specified location.<br> * <b>Note: Only a Tuple DataSet can written as a CSV file.</b><br> * For each Tuple field the result of {@link Object#toString()} is written. * Tuple fields are separated by the default field delimiter {@code "comma" (,)}.<br> * Tuples are are separated by the newline character ({@code \n}). * * @param filePath The path pointing to the location the CSV file is written to. * @param writeMode The behavior regarding existing files. Options are NO_OVERWRITE and OVERWRITE. * @return The DataSink that writes the DataSet. * * @see Tuple * @see CsvOutputFormat * @see DataSet#writeAsText(String) Output files and directories */ public DataSink<T> writeAsCsv(String filePath, WriteMode writeMode) { return internalWriteAsCsv(new Path(filePath),CsvOutputFormat.DEFAULT_LINE_DELIMITER, CsvOutputFormat.DEFAULT_FIELD_DELIMITER, writeMode); } /** * Writes a {@link Tuple} DataSet as CSV file(s) to the specified location with the specified field and line delimiters.<br> * <b>Note: Only a Tuple DataSet can written as a CSV file.</b><br> * For each Tuple field the result of {@link Object#toString()} is written. * * @param filePath The path pointing to the location the CSV file is written to. * @param rowDelimiter The row delimiter to separate Tuples. * @param fieldDelimiter The field delimiter to separate Tuple fields. * * @see Tuple * @see CsvOutputFormat * @see DataSet#writeAsText(String) Output files and directories */ public DataSink<T> writeAsCsv(String filePath, String rowDelimiter, String fieldDelimiter) { return internalWriteAsCsv(new Path(filePath), rowDelimiter, fieldDelimiter, null); } /** * Writes a {@link Tuple} DataSet as CSV file(s) to the specified location with the specified field and line delimiters.<br> * <b>Note: Only a Tuple DataSet can written as a CSV file.</b><br> § * For each Tuple field the result of {@link Object#toString()} is written. * * @param filePath The path pointing to the location the CSV file is written to. * @param rowDelimiter The row delimiter to separate Tuples. * @param fieldDelimiter The field delimiter to separate Tuple fields. * @param writeMode The behavior regarding existing files. Options are NO_OVERWRITE and OVERWRITE. * * @see Tuple * @see CsvOutputFormat * @see DataSet#writeAsText(String) Output files and directories */ public DataSink<T> writeAsCsv(String filePath, String rowDelimiter, String fieldDelimiter, WriteMode writeMode) { return internalWriteAsCsv(new Path(filePath), rowDelimiter, fieldDelimiter, writeMode); } @SuppressWarnings("unchecked") private <X extends Tuple> DataSink<T> internalWriteAsCsv(Path filePath, String rowDelimiter, String fieldDelimiter, WriteMode wm) { Preconditions.checkArgument(getType().isTupleType(), "The writeAsCsv() method can only be used on data sets of tuples."); CsvOutputFormat<X> of = new CsvOutputFormat<>(filePath, rowDelimiter, fieldDelimiter); if(wm != null) { of.setWriteMode(wm); } return output((OutputFormat<T>) of); } /** * Prints the elements in a DataSet to the standard output stream {@link System#out} of the JVM that calls * the print() method. For programs that are executed in a cluster, this method needs * to gather the contents of the DataSet back to the client, to print it there. * * <p>The string written for each element is defined by the {@link Object#toString()} method.</p> * * <p>This method immediately triggers the program execution, similar to the * {@link #collect()} and {@link #count()} methods.</p> * * @see #printToErr() * @see #printOnTaskManager(String) */ public void print() throws Exception { List<T> elements = collect(); for (T e: elements) { System.out.println(e); } } /** * Prints the elements in a DataSet to the standard error stream {@link System#err} of the JVM that calls * the print() method. For programs that are executed in a cluster, this method needs * to gather the contents of the DataSet back to the client, to print it there. * * <p>The string written for each element is defined by the {@link Object#toString()} method.</p> * * <p>This method immediately triggers the program execution, similar to the * {@link #collect()} and {@link #count()} methods.</p> * * @see #print() * @see #printOnTaskManager(String) */ public void printToErr() throws Exception { List<T> elements = collect(); for (T e: elements) { System.err.println(e); } } /** * Writes a DataSet to the standard output streams (stdout) of the TaskManagers that execute * the program (or more specifically, the data sink operators). On a typical cluster setup, the * data will appear in the TaskManagers' <i>.out</i> files. * * <p>To print the data to the console or stdout stream of the client process instead, use the * {@link #print()} method.</p> * * <p>For each element of the DataSet the result of {@link Object#toString()} is written.</p> * * @param prefix The string to prefix each line of the output with. This helps identifying outputs * from different printing sinks. * @return The DataSink operator that writes the DataSet. * * @see #print() */ public DataSink<T> printOnTaskManager(String prefix) { return output(new PrintingOutputFormat<T>(prefix, false)); } /** * Writes a DataSet to the standard output stream (stdout). * * <p>For each element of the DataSet the result of {@link Object#toString()} is written.</p> * * @param sinkIdentifier The string to prefix the output with. * @return The DataSink that writes the DataSet. * * @deprecated Use {@link #printOnTaskManager(String)} instead. */ @Deprecated @PublicEvolving public DataSink<T> print(String sinkIdentifier) { return output(new PrintingOutputFormat<T>(sinkIdentifier, false)); } /** * Writes a DataSet to the standard error stream (stderr). * * <p>For each element of the DataSet the result of {@link Object#toString()} is written.</p> * * @param sinkIdentifier The string to prefix the output with. * @return The DataSink that writes the DataSet. * * @deprecated Use {@link #printOnTaskManager(String)} instead, othe * {@link PrintingOutputFormat} instead. */ @Deprecated @PublicEvolving public DataSink<T> printToErr(String sinkIdentifier) { return output(new PrintingOutputFormat<T>(sinkIdentifier, true)); } /** * Writes a DataSet using a {@link FileOutputFormat} to a specified location. * This method adds a data sink to the program. * * @param outputFormat The FileOutputFormat to write the DataSet. * @param filePath The path to the location where the DataSet is written. * @return The DataSink that writes the DataSet. * * @see FileOutputFormat */ public DataSink<T> write(FileOutputFormat<T> outputFormat, String filePath) { Preconditions.checkNotNull(filePath, "File path must not be null."); Preconditions.checkNotNull(outputFormat, "Output format must not be null."); outputFormat.setOutputFilePath(new Path(filePath)); return output(outputFormat); } /** * Writes a DataSet using a {@link FileOutputFormat} to a specified location. * This method adds a data sink to the program. * * @param outputFormat The FileOutputFormat to write the DataSet. * @param filePath The path to the location where the DataSet is written. * @param writeMode The mode of writing, indicating whether to overwrite existing files. * @return The DataSink that writes the DataSet. * * @see FileOutputFormat */ public DataSink<T> write(FileOutputFormat<T> outputFormat, String filePath, WriteMode writeMode) { Preconditions.checkNotNull(filePath, "File path must not be null."); Preconditions.checkNotNull(writeMode, "Write mode must not be null."); Preconditions.checkNotNull(outputFormat, "Output format must not be null."); outputFormat.setOutputFilePath(new Path(filePath)); outputFormat.setWriteMode(writeMode); return output(outputFormat); } /** * Emits a DataSet using an {@link OutputFormat}. This method adds a data sink to the program. * Programs may have multiple data sinks. A DataSet may also have multiple consumers (data sinks * or transformations) at the same time. * * @param outputFormat The OutputFormat to process the DataSet. * @return The DataSink that processes the DataSet. * * @see OutputFormat * @see DataSink */ public DataSink<T> output(OutputFormat<T> outputFormat) { Preconditions.checkNotNull(outputFormat); // configure the type if needed if (outputFormat instanceof InputTypeConfigurable) { ((InputTypeConfigurable) outputFormat).setInputType(getType(), context.getConfig() ); } DataSink<T> sink = new DataSink<>(this, outputFormat, getType()); this.context.registerDataSink(sink); return sink; } // -------------------------------------------------------------------------------------------- // Utilities // -------------------------------------------------------------------------------------------- protected static void checkSameExecutionContext(DataSet<?> set1, DataSet<?> set2) { if (set1.getExecutionEnvironment() != set2.getExecutionEnvironment()) { throw new IllegalArgumentException("The two inputs have different execution contexts."); } } }