/* * Copyright (C) 2011-2012 Dr. John Lindsay <jlindsay@uoguelph.ca> * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ package plugins; import java.text.DecimalFormat; import java.util.Date; import whitebox.geospatialfiles.ShapeFile; import whitebox.geospatialfiles.WhiteboxRaster; import whitebox.geospatialfiles.shapefile.PolygonM; import whitebox.geospatialfiles.shapefile.PolygonZ; import whitebox.geospatialfiles.shapefile.ShapeFileRecord; import whitebox.geospatialfiles.shapefile.ShapeType; import whitebox.geospatialfiles.shapefile.attributes.DBFField; import whitebox.interfaces.WhiteboxPlugin; import whitebox.interfaces.WhiteboxPluginHost; /** * This tool calculates the orientation of polygon features based on a regression analysis. * @author Dr. John Lindsay email: jlindsay@uoguelph.ca */ public class PatchOrientation implements WhiteboxPlugin { private WhiteboxPluginHost myHost; private String[] args; /** * Used to retrieve the plugin tool's name. This is a short, unique name * containing no spaces. * * @return String containing plugin name. */ @Override public String getName() { return "PatchOrientation"; } /** * Used to retrieve the plugin tool's descriptive name. This can be a longer name (containing spaces) and is used in the interface to list the tool. * @return String containing the plugin descriptive name. */ @Override public String getDescriptiveName() { return "Patch Orientation"; } /** * Used to retrieve a short description of what the plugin tool does. * @return String containing the plugin's description. */ @Override public String getToolDescription() { return "Finds the orientation " + "of polygon objects."; } /** * Used to identify which toolboxes this plugin tool should be listed in. * @return Array of Strings. */ @Override public String[] getToolbox() { String[] ret = { "PatchShapeTools" }; return ret; } /** * Sets the WhiteboxPluginHost to which the plugin tool is tied. This is the class * that the plugin will send all feedback messages, progress updates, and return objects. * @param host The WhiteboxPluginHost that called the plugin tool. */ @Override public void setPluginHost(WhiteboxPluginHost host) { myHost = host; } /** * Used to communicate feedback pop-up messages between a plugin tool and the main Whitebox user-interface. * @param feedback String containing the text to display. */ private void showFeedback(String feedback) { if (myHost != null) { myHost.showFeedback(feedback); } else { System.out.println(feedback); } } /** * Used to communicate a return object from a plugin tool to the main Whitebox user-interface. * @return Object, such as an output WhiteboxRaster. */ private void returnData(Object ret) { if (myHost != null) { myHost.returnData(ret); } } /** * Used to communicate a progress update between a plugin tool and the main Whitebox user interface. * @param progressLabel A String to use for the progress label. * @param progress Float containing the progress value (between 0 and 100). */ private void updateProgress(String progressLabel, int progress) { if (myHost != null) { myHost.updateProgress(progressLabel, progress); } else { System.out.println(progressLabel + " " + progress + "%"); } } /** * Used to communicate a progress update between a plugin tool and the main Whitebox user interface. * @param progress Float containing the progress value (between 0 and 100). */ private void updateProgress(int progress) { if (myHost != null) { myHost.updateProgress(progress); } else { System.out.println("Progress: " + progress + "%"); } } /** * Sets the arguments (parameters) used by the plugin. * @param args An array of string arguments. */ @Override public void setArgs(String[] args) { this.args = args.clone(); } private boolean cancelOp = false; /** * Used to communicate a cancel operation from the Whitebox GUI. * @param cancel Set to true if the plugin should be canceled. */ @Override public void setCancelOp(boolean cancel) { cancelOp = cancel; } private void cancelOperation() { showFeedback("Operation cancelled."); updateProgress("Progress: ", 0); } private boolean amIActive = false; /** * Used by the Whitebox GUI to tell if this plugin is still running. * @return a boolean describing whether or not the plugin is actively being used. */ @Override public boolean isActive() { return amIActive; } private void calculateRaster() { amIActive = true; String inputHeader = null; String outputHeader = null; int col; int row; int numCols; int numRows; int a; int i; float progress; int range; boolean blnTextOutput = false; double z; if (args.length <= 0) { showFeedback("Plugin parameters have not been set."); return; } for (i = 0; i < args.length; i++) { if (i == 0) { inputHeader = args[i]; } else if (i == 1) { outputHeader = args[i]; } else if (i == 2) { blnTextOutput = Boolean.parseBoolean(args[i]); } } // check to see that the inputHeader and outputHeader are not null. if ((inputHeader == null) || (outputHeader == null)) { showFeedback("One or more of the input parameters have not been set properly."); return; } try { WhiteboxRaster image = new WhiteboxRaster(inputHeader, "r"); numRows = image.getNumberRows(); numCols = image.getNumberColumns(); double noData = image.getNoDataValue(); WhiteboxRaster output = new WhiteboxRaster(outputHeader, "rw", inputHeader, WhiteboxRaster.DataType.FLOAT, noData); output.setPreferredPalette("spectrum.pal"); output.setDataScale(WhiteboxRaster.DataScale.CONTINUOUS); int minValue = (int)(image.getMinimumValue()); int maxValue = (int)(image.getMaximumValue()); range = maxValue - minValue; double[][] regressionData = new double[6][range + 1]; //double[] rSquare = new double[range + 1]; //double[][] totals = new double[3][range + 1]; long[][] minRowAndCol = new long[2][range + 1]; for (a = 0; a <= range; a++) { minRowAndCol[0][a] = Long.MAX_VALUE; minRowAndCol[1][a] = Long.MAX_VALUE; } updateProgress("Finding patch min row and columns:", 0); double[] data; for (row = 0; row < numRows; row++) { data = image.getRowValues(row); for (col = 0; col < numCols; col++) { if (data[col] > 0) { a = (int)(data[col] - minValue); if (row < minRowAndCol[0][a]) { minRowAndCol[0][a] = row; } if (col < minRowAndCol[1][a]) { minRowAndCol[1][a] = col; } } } if (cancelOp) { cancelOperation(); return; } progress = (float) (100f * row / (numRows - 1)); updateProgress("Finding patch min row and columns:", (int) progress); } // Calculate the patch orientation. updateProgress("Calculating patch linearity:", 0); for (row = 0; row < numRows; row++) { data = image.getRowValues(row); for (col = 0; col < numCols; col++) { if (data[col] > 0) { a = (int)(data[col] - minValue); regressionData[0][a]++; // N regressionData[1][a] += (col - minRowAndCol[1][a]); // sigma X regressionData[2][a] += (row - minRowAndCol[0][a]); // sigma Y regressionData[3][a] += (col - minRowAndCol[1][a]) * (row - minRowAndCol[0][a]); // sigma XY regressionData[4][a] += (col - minRowAndCol[1][a]) * (col - minRowAndCol[1][a]); // sigma Xsqr regressionData[5][a] += (row - minRowAndCol[0][a]) * (row - minRowAndCol[0][a]); // sigma Ysqr } } if (cancelOp) { cancelOperation(); return; } progress = (float) (100f * row / (numRows - 1)); updateProgress("Calculating patch linearity:", (int) progress); } double sigmaX; double sigmaY; double N; double sigmaXY; double sigmaXsqr; double mean = 0; double radians2Deg = 180 / Math.PI; double[] slope = new double[range + 1]; for (a = 0; a <= range; a++) { if (regressionData[0][a] > 1) { N = regressionData[0][a]; sigmaX = regressionData[1][a]; mean = sigmaX / N; sigmaY = regressionData[2][a]; sigmaXY = regressionData[3][a]; sigmaXsqr = regressionData[4][a]; if ((sigmaXsqr - mean * sigmaX) > 0) { slope[a] = (-(sigmaXY - mean * sigmaY) / (sigmaXsqr - mean * sigmaX)); // notice that the minus sign in the above equation is because rows actually increase towards the bottom of the image. slope[a] = (Math.atan(slope[a]) * radians2Deg); if (slope[a] < 0) { slope[a] = 90 + -1 * slope[a]; } else { slope[a] = 90 - slope[a]; } } else { slope[a] = 0; } } } for (row = 0; row < numRows; row++) { data = image.getRowValues(row); for (col = 0; col < numCols; col++) { if (data[col] > 0) { a = (int) (data[col] - minValue); output.setValue(row, col, slope[a]); } } if (cancelOp) { cancelOperation(); return; } progress = (float) (100f * row / (numRows - 1)); updateProgress((int) progress); } output.addMetadataEntry("Created by the " + getDescriptiveName() + " tool."); output.addMetadataEntry("Created on " + new Date()); image.close(); output.close(); if (blnTextOutput) { DecimalFormat df; df = new DecimalFormat("0.0000"); String retstr = "Patch Orientation\nPatch ID\tOrientation"; for (a = 0; a <= range; a++) { if (regressionData[0][a] > 0) { retstr = retstr + "\n" + (a + minValue) + "\t" + df.format(slope[a]); } } returnData(retstr); } // returning a header file string displays the image. returnData(outputHeader); } catch (OutOfMemoryError oe) { myHost.showFeedback("An out-of-memory error has occurred during operation."); } catch (Exception e) { myHost.showFeedback("An error has occurred during operation. See log file for details."); myHost.logException("Error in " + getDescriptiveName(), e); } finally { updateProgress("Progress: ", 0); // tells the main application that this process is completed. amIActive = false; myHost.pluginComplete(); } } private void calculateVector() { /* * Notice that this tool assumes that each record in the shapefile is an * individual polygon. The feature can contain multiple parts only if it * has holes, i.e. islands. A multipart record cannot contain multiple * and seperate features. This is because it complicates the calculation * of feature area and perimeter. */ amIActive = true; // Declare the variable. String inputFile = null; int progress; int recNum; int v; double sigmaX; double sigmaY; double N; double sigmaXY; double sigmaXsqr; double sigmaYsqr; double mean; double meanY; double radians2Deg = 180 / Math.PI; double slope; double slopeInDegrees; double slopeM1; double slopeM2; double slopeRMA; double slopeDegM1; double slopeDegM2; double slopeDegRMA; double midX; double midY; double Sxx, Syy, Sxy; double z = 0; double x, y; if (args.length <= 0) { showFeedback("Plugin parameters have not been set."); return; } inputFile = args[0]; // check to see that the inputHeader and outputHeader are not null. if (inputFile == null) { showFeedback("One or more of the input parameters have not been set properly."); return; } try { ShapeFile input = new ShapeFile(inputFile); double numberOfRecords = input.getNumberOfRecords(); if (input.getShapeType().getBaseType() != ShapeType.POLYGON) { showFeedback("This function can only be applied to polygon type shapefiles."); return; } /* * create a new field in the input file's database to hold the * fractal dimension. Put it at the end of the database. */ DBFField field = new DBFField(); field = new DBFField(); field.setName("ORIENT"); field.setDataType(DBFField.DBFDataType.NUMERIC); field.setFieldLength(10); field.setDecimalCount(4); input.getAttributeTable().addField(field); // initialize the shapefile. ShapeType inputType = input.getShapeType(); double[][] vertices = null; double[] regressionData; double rSquared; for (ShapeFileRecord record : input.records) { midX = 0; midY = 0; switch (inputType) { case POLYGON: whitebox.geospatialfiles.shapefile.Polygon recPolygon = (whitebox.geospatialfiles.shapefile.Polygon) (record.getGeometry()); vertices = recPolygon.getPoints(); midX = recPolygon.getXMin() + (recPolygon.getXMax() - recPolygon.getXMin()) / 2; midY = recPolygon.getYMin() + (recPolygon.getYMax() - recPolygon.getYMin()) / 2; break; case POLYGONZ: PolygonZ recPolygonZ = (PolygonZ) (record.getGeometry()); vertices = recPolygonZ.getPoints(); midX = recPolygonZ.getXMin() + (recPolygonZ.getXMax() - recPolygonZ.getXMin()) / 2; midY = recPolygonZ.getYMin() + (recPolygonZ.getYMax() - recPolygonZ.getYMin()) / 2; break; case POLYGONM: PolygonM recPolygonM = (PolygonM) (record.getGeometry()); vertices = recPolygonM.getPoints(); midX = recPolygonM.getXMin() + (recPolygonM.getXMax() - recPolygonM.getXMin()) / 2; midY = recPolygonM.getYMin() + (recPolygonM.getYMax() - recPolygonM.getYMin()) / 2; break; } // initialize variables regressionData = new double[5]; rSquared = 0; slope = 0; slopeInDegrees = 0; slopeDegM1 = 0; slopeDegM2 = 0; slopeDegRMA = 0; slopeM1 = 0; slopeM2 = 0; slopeRMA = 0; N = vertices.length; for (v = 0; v < N; v++) { x = vertices[v][0] - midX; y = vertices[v][1] - midY; regressionData[0] += x; // sigma X regressionData[1] += y; // sigma Y regressionData[2] += x * y; // sigma XY regressionData[3] += x * x; // sigma Xsqr regressionData[4] += y * y; // sigma Ysqr } sigmaX = regressionData[0]; mean = sigmaX / N; sigmaY = regressionData[1]; meanY = sigmaY / N; sigmaXY = regressionData[2]; sigmaXsqr = regressionData[3]; sigmaYsqr = regressionData[4]; // Calculate the slope of the y on x regression (model 1) if ((sigmaXsqr - mean * sigmaX) > 0) { slopeM1 = (sigmaXY - mean * sigmaY) / (sigmaXsqr - mean * sigmaX); slopeDegM1 = (Math.atan(slopeM1) * radians2Deg); if (slopeDegM1 < 0) { slopeDegM1 = 90 + -1 * slopeDegM1; } else { slopeDegM1 = 90 - slopeDegM1; } } Sxx = (sigmaXsqr / N - mean * mean); Syy = (sigmaYsqr / N - (sigmaY / N) * (sigmaY / N)); Sxy = (sigmaXY / N - (sigmaX * sigmaY) / (N * N)); if (Math.sqrt(Sxx * Syy) != 0) { rSquared = ((Sxy / Math.sqrt(Sxx * Syy)) * (Sxy / Math.sqrt(Sxx * Syy))); } // Calculate the slope of the Reduced Major Axis (RMA) slopeRMA = Math.sqrt(Syy / Sxx); if ((sigmaXY - mean * sigmaY) / (sigmaXsqr - mean * sigmaX) < 0) { slopeRMA = -slopeRMA; } slopeDegRMA = (Math.atan(slopeRMA) * radians2Deg); if (slopeDegRMA < 0) { slopeDegRMA = 90 + -1 * slopeDegRMA; } else { slopeDegRMA = 90 - slopeDegRMA; } // Perform the X on Y (inverse) regression. if ((sigmaYsqr - meanY * sigmaY) > 0) { slopeM2 = (sigmaXY - meanY * sigmaX) / (sigmaYsqr - meanY * sigmaY); slopeM2 = 1 / slopeM2; slopeDegM2 = (Math.atan(slopeM2) * radians2Deg); if (slopeDegM2 < 0) { slopeDegM2 = 90 + -1 * slopeDegM2; } else { slopeDegM2 = 90 - slopeDegM2; } } /* * When the polygon is nearly vertically oriented (+/- 6 * degrees) the x-on-y slope (model 2) does a better job * describing the trendline. When the polygon is nearly E-W in * orientation, the standard y-on-x slope (model 1 regression) * does a better job. Otherwise, the RMA seems to be the best * model, this is particularly the case since there is similar * levels of error in both the x and y, as these are simply * coordinates. */ if (slopeDegM2 < 6 || slopeDegM2 > 174) { slope = slopeM2; slopeInDegrees = slopeDegM2; } else if (slopeDegM1 > 84 && slopeDegM1 < 96) { slope = slopeM1; slopeInDegrees = slopeDegM1; } else { slope = slopeRMA; slopeInDegrees = slopeDegRMA; } recNum = record.getRecordNumber() - 1; Object[] recData = input.getAttributeTable().getRecord(recNum); recData[recData.length - 1] = new Double(slopeInDegrees); input.getAttributeTable().updateRecord(recNum, recData); if (cancelOp) { cancelOperation(); return; } progress = (int) (record.getRecordNumber() / numberOfRecords * 100); updateProgress(progress); } // returning the database file will result in it being opened in the Whitebox GUI. returnData(input.getDatabaseFile()); } catch (OutOfMemoryError oe) { myHost.showFeedback("An out-of-memory error has occurred during operation."); } catch (Exception e) { myHost.showFeedback("An error has occurred during operation. See log file for details."); myHost.logException("Error in " + getDescriptiveName(), e); } finally { updateProgress("Progress: ", 0); // tells the main application that this process is completed. amIActive = false; myHost.pluginComplete(); } } /** * Used to execute this plugin tool. */ @Override public void run() { amIActive = true; String inputFile = args[0]; if (inputFile.toLowerCase().contains(".dep")) { calculateRaster(); } else if (inputFile.toLowerCase().contains(".shp")) { calculateVector(); } else { showFeedback("There was a problem reading the input file."); } } }