/*- Copyright (c) 2012 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ package uk.ac.diamond.scisoft.analysis.utils; import org.apache.commons.math3.complex.Complex; /**- <pre> * Available at: http://ab-initio.mit.edu/Faddeeva Computes various error functions (erf, erfc, erfi, erfcx), including the Dawson integral, in the complex plane, based on algorithms for the computation of the Faddeeva function w(z) = exp(-z^2) * erfc(-i*z). Given w(z), the error functions are mostly straightforward to compute, except for certain regions where we have to switch to Taylor expansions to avoid cancellation errors [e.g. near the origin for erf(z)]. To compute the Faddeeva function, we use a combination of two algorithms: For sufficiently large |z|, we use a continued-fraction expansion for w(z) similar to those described in: Walter Gautschi, "Efficient computation of the complex error function," SIAM J. Numer. Anal. 7(1), pp. 187-198 (1970) G. P. M. Poppe and C. M. J. Wijers, "More efficient computation of the complex error function," ACM Trans. Math. Soft. 16(1), pp. 38-46 (1990). Unlike those papers, however, we switch to a completely different algorithm for smaller |z|: Mofreh R. Zaghloul and Ahmed N. Ali, "Algorithm 916: Computing the Faddeyeva and Voigt Functions," ACM Trans. Math. Soft. 38(2), 15 (2011). (I initially used this algorithm for all z, but it turned out to be significantly slower than the continued-fraction expansion for larger |z|. On the other hand, it is competitive for smaller |z|, and is significantly more accurate than the Poppe & Wijers code in some regions, e.g. in the vicinity of z=1+1i.) Note that this is an INDEPENDENT RE-IMPLEMENTATION of these algorithms, based on the description in the papers ONLY. In particular, I did not refer to the authors' Fortran or Matlab implementations, respectively, (which are under restrictive ACM copyright terms and therefore unusable in free/open-source software). Steven G. Johnson, Massachusetts Institute of Technology http://math.mit.edu/~stevenj October 2012. -- Note that Algorithm 916 assumes that the erfc(x) function, or rather the scaled function erfcx(x) = exp(x*x)*erfc(x), is supplied for REAL arguments x. I originally used an erfcx routine derived from DERFC in SLATEC, but I have since replaced it with a much faster routine written by me which uses a combination of continued-fraction expansions and a lookup table of Chebyshev polynomials. For speed, I implemented a similar algorithm for Im[w(x)] of real x, since this comes up frequently in the other error functions. A small test program is included the end, which checks the w(z) etc. results against several known values. To compile the test function, compile with -DTEST_FADDEEVA (that is, #define TEST_FADDEEVA). If HAVE_CONFIG_H is #defined (e.g. by compiling with -DHAVE_CONFIG_H), then we #include "config.h", which is assumed to be a GNU autoconf-style header defining HAVE_* macros to indicate the presence of features. In particular, if HAVE_ISNAN and HAVE_ISINF are #defined, we use those functions in math.h instead of defining our own, and if HAVE_ERF and/or HAVE_ERFC are defined we use those functions from <cmath> for erf and erfc of real arguments, respectively, instead of defining our own. REVISION HISTORY: 4 October 2012: Initial public release (SGJ) 5 October 2012: Revised (SGJ) to fix spelling error, start summation for large x at round(x/a) (> 1) rather than ceil(x/a) as in the original paper, which should slightly improve performance (and, apparently, slightly improves accuracy) 19 October 2012: Revised (SGJ) to fix bugs for large x, large -y, and 15<x<26. Performance improvements. Prototype now supplies default value for relerr. 24 October 2012: Switch to continued-fraction expansion for sufficiently large z, for performance reasons. Also, avoid spurious overflow for |z| > 1e154. Set relerr argument to min(relerr,0.1). 27 October 2012: Enhance accuracy in Re[w(z)] taken by itself, by switching to Alg. 916 in a region near the real-z axis where continued fractions have poor relative accuracy in Re[w(z)]. Thanks to M. Zaghloul for the tip. 29 October 2012: Replace SLATEC-derived erfcx routine with completely rewritten code by me, using a very different algorithm which is much faster. 30 October 2012: Implemented special-case code for real z (where real part is exp(-x^2) and imag part is Dawson integral), using algorithm similar to erfx. Export ImFaddeeva_w function to make Dawson's integral directly accessible. 3 November 2012: Provide implementations of erf, erfc, erfcx, and Dawson functions in Faddeeva:: namespace, in addition to Faddeeva::w. Provide header file Faddeeva.hh. 4 November 2012: Slightly faster erf for real arguments. Updated MATLAB and Octave plugins. 27 November 2012: Support compilation with either C++ or plain C (using C99 complex numbers). For real x, use standard-library erf(x) and erfc(x) if available (for C99 or C++11). #include "config.h" if HAVE_CONFIG_H is #defined. 15 December 2012: Portability fixes (copysign, Inf/NaN creation), use CMPLX/__builtin_complex if available in C, slight accuracy improvements to erf and dawson functions near the origin. Use gnulib functions if GNULIB_NAMESPACE is defined. 18 December 2012: Slight tweaks (remove recomputation of x*x in Dawson) 12 May 2015: Bugfix for systems lacking copysign function. * </pre> * Ported to Java by Peter.Chang@diamond.ac.uk, 20160129 */ public class Faddeeva { // Commons math does not handle infinities in a useful manner, // (see https://issues.apache.org/jira/browse/MATH-667). // So use a simple implementation internally static class cmplx { double r, i; public cmplx() { } public cmplx(double x) { r = x; } public cmplx(double x, double y) { r = x; i = y; } @Override public String toString() { return r + (i < 0 ? " - i" : " + i") + Math.abs(i) ; } } private static cmplx ZERO = new cmplx(); private static final Complex C(cmplx z) { return new Complex(z.r, z.i); } // utilities to minimise difference in code private static final cmplx C(double x) { return new cmplx(x); } private static final cmplx C(double x, double y) { return new cmplx(x, y); } private static final double creal(cmplx z) { return z.r; } private static final double cimag(cmplx z) { return z.i; } private static final cmplx cexp(cmplx z) { double r = Math.exp(z.r); if (r == 0) { return ZERO; } return new cmplx(r * Math.cos(z.i), r * Math.sin(z.i)); } private static final cmplx cmul(cmplx a, cmplx b) { return new cmplx(a.r*b.r - a.i*b.i, a.r*b.i + a.i*b.r); } private static final cmplx cmul(double a, cmplx b) { return new cmplx(a * b.r, a * b.i); } private static final cmplx cmul(cmplx a, double b) { return new cmplx(b * a.r, b * a.i); } private static final cmplx cadd(cmplx a, cmplx b) { return new cmplx(a.r + b.r, a.i + b.i); } private static final cmplx cadd(double a, cmplx b) { return new cmplx(a + b.r, b.i); } // private static final cmplx cadd(cmplx a, double b) { // return new cmplx(a.r + b, a.i); // } private static final cmplx csub(cmplx a, cmplx b) { return new cmplx(a.r - b.r, a.i - b.i); } private static final cmplx csub(double a, cmplx b) { return new cmplx(a - b.r, -b.i); } private static final cmplx csub(cmplx a, double b) { return new cmplx(a.r - b, a.i); } private static cmplx cneg(cmplx z) { return new cmplx(-z.r, -z.i); } private static final double fabs(double x) { return Math.abs(x); } private static final double exp(double x) { return Math.exp(x); } private static final double cos(double x) { return Math.cos(x); } private static final double sin(double x) { return Math.sin(x); } private static final double floor(double x) { return Math.floor(x); } private static final double copysign(double x, double y) { return Math.copySign(x, y); } private static final boolean isnan(double x) { return Double.isNaN(x); } private static final boolean isinf(double x) { return Double.isInfinite(x); } private static final double Inf = Double.POSITIVE_INFINITY; private static final double NaN = Double.NaN; private static final double HUGE_VAL = Inf; private static final double DBL_EPSILON = Math.ulp(1.); private static final double ONE_OVER_SQRT_PI = 0.56418958354775628694807945156; // 1./Math.sqrt(Math.PI); private static final double SQRT_PI_OVER_TWO = 0.8862269254527580136490837416705725913990; // 0.5*Math.sqrt(Math.PI); private static final double[] TAYLOR_COEFFS = new double[] {1.1283791670955125739, 0.37612638903183752464, 0.11283791670955125739, 0.026866170645131251760, 0.0052239776254421878422}; // Taylor expansion of erf(x) = 2/sqrt(pi) * x * (1 - x^2/3 + x^4/10 - x^6/42 + x^8/216 + ...) /** * Compute the scaled complementary error function for a complex argument * @param z * @param relerr * @return erfcx(z) = exp(z^2) erfc(z) */ public static Complex erfcx(Complex z, double relerr) { return C(erfcx_i(C(z.getReal(), z.getImaginary()), relerr)); } private static cmplx erfcx_i(cmplx z, double relerr) { return w_i(C(-cimag(z), creal(z)), relerr); } /** * Compute the error function * @param x * @return erf(x) */ public static double erf(double x) { double mx2 = -x * x; if (mx2 < -750) // underflow return (x >= 0 ? 1.0 : -1.0); if (x >= 0) { if (x >= 8e-2) // if (x < 8e-2) goto taylor; return 1.0 - exp(mx2) * erfcx(x); } else { // x < 0 // if (x > -8e-2) goto taylor; if (x <= -8e-2) return exp(mx2) * erfcx(-x) - 1.0; // } // Use Taylor series for small |x|, to avoid cancellation inaccuracy // erf(x) = 2/sqrt(pi) * x * (1 - x^2/3 + x^4/10 - x^6/42 + x^8/216 + ...) return x * (TAYLOR_COEFFS[0] + mx2 * (TAYLOR_COEFFS[1] + mx2 * (TAYLOR_COEFFS[2] + mx2 * (TAYLOR_COEFFS[3] + mx2 * TAYLOR_COEFFS[4])))); } /** * Compute the error function for a complex argument * @param z * @param relerr * @return erf(z) */ public static Complex erf(Complex z, double relerr) { return C(erf_i(C(z.getReal(), z.getImaginary()), relerr)); } private static cmplx erf_i(cmplx z, double relerr) { double x = creal(z), y = cimag(z); if (y == 0) return C(erf(x), y); // preserve sign of 0 if (x == 0) // handle separately for speed & handling of y = Inf or NaN return C(x, // preserve sign of 0 /*- handle y -> Inf limit manually, since exp(y^2) -> Inf but Im[w(y)] -> 0, so IEEE will give us a NaN when it should be Inf */ y * y > 720 ? (y > 0 ? Inf : -Inf) : exp(y * y) * wImaginary(y)); double mRe_z2 = (y - x) * (x + y); // Re(-z^2), being careful of overflow double mIm_z2 = -2 * x * y; // Im(-z^2) if (mRe_z2 < -750) // underflow return C(x >= 0 ? 1.0 : -1.0); /*- Handle positive and negative x via different formulas, using the mirror symmetries of w, to avoid overflow/underflow problems from multiplying exponentially large and small quantities. */ if (x >= 0) { if (x < 8e-2) { if (fabs(y) < 1e-2) // goto taylor; return taylor(z, mRe_z2, mIm_z2); else if (fabs(mIm_z2) < 5e-3 && x < 5e-3) // goto taylor_erfi; return taylor_erfi(x, y); } /*- don't use complex exp function, since that will produce spurious NaN values when multiplying w in an overflow situation. */ return csub(1.0, cmul(exp(mRe_z2), cmul(C(cos(mIm_z2), sin(mIm_z2)), w_i(C(-y, x), relerr)))); } // else { // x < 0 if (x > -8e-2) { // duplicate from above to avoid fabs(x) call if (fabs(y) < 1e-2) // goto taylor; return taylor(z, mRe_z2, mIm_z2); else if (fabs(mIm_z2) < 5e-3 && x > -5e-3) // goto taylor_erfi; return taylor_erfi(x, y); } else if (isnan(x)) return C(NaN, y == 0 ? 0 : NaN); /*- don't use complex exp function, since that will produce spurious NaN values when multiplying w in an overflow situation. */ return csub(cmul(exp(mRe_z2), cmul(C(cos(mIm_z2), sin(mIm_z2)), w_i(C(y, -x), relerr))), 1.0); } private static cmplx taylor(cmplx z, double mRe_z2, double mIm_z2) { // Use Taylor series for small |z|, to avoid cancellation inaccuracy // erf(z) = 2/sqrt(pi) * z * (1 - z^2/3 + z^4/10 - z^6/42 + z^8/216 + ...) cmplx mz2 = C(mRe_z2, mIm_z2); // -z^2 return cmul(z, cadd(TAYLOR_COEFFS[0], cmul(mz2, cadd(TAYLOR_COEFFS[1], cmul(mz2, cadd(TAYLOR_COEFFS[2], cmul(mz2, cadd(TAYLOR_COEFFS[3], cmul(mz2, TAYLOR_COEFFS[4]))))))))); } private static cmplx taylor_erfi(double x, double y) { /*- for small |x| and small |xy|, use Taylor series to avoid cancellation inaccuracy: erf(x+iy) = erf(iy) + 2*exp(y^2)/sqrt(pi) * [ x * (1 - x^2 * (1+2y^2)/3 + x^4 * (3+12y^2+4y^4)/30 + ... - i * x^2 * y * (1 - x^2 * (3+2y^2)/6 + ...) ] where: erf(iy) = exp(y^2) * Im[w(y)] */ double x2 = x * x, y2 = y * y; double expy2 = exp(y2); return C( expy2 * x * (TAYLOR_COEFFS[0] - x2 * (TAYLOR_COEFFS[1] + 0.75225277806367504925 * y2) + x2 * x2 * (TAYLOR_COEFFS[2] + y2 * (0.45135166683820502956 + 0.15045055561273500986 * y2))), expy2 * (wImaginary(y) - x2 * y * (TAYLOR_COEFFS[0] - x2 * (0.56418958354775628695 + TAYLOR_COEFFS[1] * y2)))); } /** * Compute the imaginary error function for a complex argument * * @param z * @param relerr * @return erfi(z) = -i erf(iz) */ public static Complex erfi(Complex z, double relerr) { return C(erfi_i(C(z.getReal(), z.getImaginary()), relerr)); } private static cmplx erfi_i(cmplx z, double relerr) { cmplx e = erf_i(C(-cimag(z), creal(z)), relerr); return C(cimag(e), -creal(e)); } /** * Compute the imaginary error function * * @param x * @return erfi(x) = -i erf(ix) */ public static double erfi(double x) { return x * x > 720 ? (x > 0 ? Inf : -Inf) : exp(x * x) * wImaginary(x); } /** * Compute the complementary error function * * @param x * @return erfc(x) = 1 - erf(x) */ public static double erfc(double x) { if (x * x > 750) // underflow return (x >= 0 ? 0.0 : 2.0); return x >= 0 ? exp(-x * x) * erfcx(x) : 2. - exp(-x * x) * erfcx(-x); } /** * Compute the complementary error function for a complex argument * * @param z * @param relerr * @return erfc(z) = 1 - erfc(z) */ public static Complex erfc(Complex z, double relerr) { return C(erfc_i(C(z.getReal(), z.getImaginary()), relerr)); } private static cmplx erfc_i(cmplx z, double relerr) { double x = creal(z), y = cimag(z); if (x == 0.) return C(1, /* * handle y -> Inf limit manually, since exp(y^2) -> Inf but Im[w(y)] -> 0, so IEEE will give us a * NaN when it should be Inf */ y * y > 720 ? (y > 0 ? -Inf : Inf) : -exp(y * y) * wImaginary(y)); if (y == 0.) { if (x * x > 750) // underflow return C(x >= 0 ? 0.0 : 2.0, -y); // preserve sign of 0 return C(x >= 0 ? exp(-x * x) * erfcx(x) : 2. - exp(-x * x) * erfcx(-x), -y); // preserve sign of zero } double mRe_z2 = (y - x) * (x + y); // Re(-z^2), being careful of overflow double mIm_z2 = -2 * x * y; // Im(-z^2) if (mRe_z2 < -750) // underflow return C(x >= 0 ? 0.0 : 2.0); if (x >= 0) return cmul(cexp(C(mRe_z2, mIm_z2)), w_i(C(-y, x), relerr)); // else return csub(2.0, cmul(cexp(C(mRe_z2, mIm_z2)), w_i(C(y, -x), relerr))); } /** * Compute the Dawson function * * @param x * @return Dawson(x) = sqrt(pi)/2 * exp(-x^2) * erfi(x) */ static public double Dawson(double x) { final double spi2 = SQRT_PI_OVER_TWO; // sqrt(pi)/2 return spi2 * wImaginary(x); } /** * Compute the Dawson function for a complex argument * * @param z * @param relerr * @return Dawson(z) = sqrt(pi)/2 * exp(-z^2) * erfi(z) */ public static Complex Dawson(Complex z, double relerr) { return C(Dawson_i(C(z.getReal(), z.getImaginary()), relerr)); } private static cmplx Dawson_i(cmplx z, double relerr) { final double spi2 = SQRT_PI_OVER_TWO; // sqrt(pi)/2 final double x = creal(z), y = cimag(z); // handle axes separately for speed & proper handling of x or y = Inf or NaN if (y == 0) return C(spi2 * wImaginary(x), -y); // preserve sign of 0 if (x == 0) { double y2 = y * y; if (y2 < 2.5e-5) { // Taylor expansion return C(x, // preserve sign of 0 y * (1. + y2 * (0.6666666666666666666666666666666666666667 + y2 * 0.26666666666666666666666666666666666667))); } return C(x, // preserve sign of 0 spi2 * (y >= 0 ? exp(y2) - erfcx(y) : erfcx(-y) - exp(y2))); } double mRe_z2 = (y - x) * (x + y); // Re(-z^2), being careful of overflow double mIm_z2 = -2 * x * y; // Im(-z^2) cmplx mz2 = C(mRe_z2, mIm_z2); // -z^2 /*- Handle positive and negative x via different formulas, using the mirror symmetries of w, to avoid overflow/underflow problems from multiplying exponentially large and small quantities. */ if (y >= 0) { if (y < 5e-3) { if (fabs(x) < 5e-3) // goto taylor2; return taylor2(z, mz2); else if (fabs(mIm_z2) < 5e-3) // goto taylor_realaxis; return taylor_realaxis(x, y, spi2); } cmplx res = csub(cexp(mz2), w_i(z, relerr)); return C(-cimag(res) * spi2, creal(res) * spi2); } // else { // y < 0 if (y > -5e-3) { // duplicate from above to avoid fabs(x) call if (fabs(x) < 5e-3) // goto taylor2; return taylor2(z, mz2); else if (fabs(mIm_z2) < 5e-3) // goto taylor_realaxis; return taylor_realaxis(x, y, spi2); } else if (isnan(y)) return C(x == 0 ? 0 : NaN, NaN); cmplx res = csub(w_i(cneg(z), relerr), cexp(mz2)); return C(-cimag(res) * spi2, creal(res) * spi2); } // Use Taylor series for small |z|, to avoid cancellation inaccuracy // dawson(z) = z - 2/3 z^3 + 4/15 z^5 + ... private static cmplx taylor2(cmplx z, cmplx mz2) { return cmul(z, cadd(1., cmul(mz2, cadd(0.6666666666666666666666666666666666666667, cmul(mz2, 0.2666666666666666666666666666666666666667))))); } /*- for small |y| and small |xy|, use Taylor series to avoid cancellation inaccuracy: dawson(x + iy) = D + y^2 (D + x - 2Dx^2) + y^4 (D/2 + 5x/6 - 2Dx^2 - x^3/3 + 2Dx^4/3) + iy [ (1-2Dx) + 2/3 y^2 (1 - 3Dx - x^2 + 2Dx^3) + y^4/15 (4 - 15Dx - 9x^2 + 20Dx^3 + 2x^4 - 4Dx^5) ] + ... where D = dawson(x) However, for large |x|, 2Dx -> 1 which gives cancellation problems in this series (many of the leading terms cancel). So, for large |x|, we need to substitute a continued-fraction expansion for D. dawson(x) = 0.5 / (x-0.5/(x-1/(x-1.5/(x-2/(x-2.5/(x...)))))) The 6 terms shown here seems to be the minimum needed to be accurate as soon as the simpler Taylor expansion above starts breaking down. Using this 6-term expansion, factoring out the denominator, and simplifying with Maple, we obtain: Re dawson(x + iy) * (-15 + 90x^2 - 60x^4 + 8x^6) / x = 33 - 28x^2 + 4x^4 + y^2 (18 - 4x^2) + 4 y^4 Im dawson(x + iy) * (-15 + 90x^2 - 60x^4 + 8x^6) / y = -15 + 24x^2 - 4x^4 + 2/3 y^2 (6x^2 - 15) - 4 y^4 Finally, for |x| > 5e7, we can use a simpler 1-term continued-fraction expansion for the real part, and a 2-term expansion for the imaginary part. (This avoids overflow problems for huge |x|.) This yields: Re dawson(x + iy) = [1 + y^2 (1 + y^2/2 - (xy)^2/3)] / (2x) Im dawson(x + iy) = y [ -1 - 2/3 y^2 + y^4/15 (2x^2 - 4) ] / (2x^2 - 1) */ static private cmplx taylor_realaxis(double x, double y, double spi2) { double x2 = x * x; if (x2 > 1600) { // |x| > 40 double y2 = y * y; if (x2 > 25e14) {// |x| > 5e7 double xy2 = (x * y) * (x * y); return C((0.5 + y2 * (0.5 + 0.25 * y2 - 0.16666666666666666667 * xy2)) / x, y * (-1 + y2 * (-0.66666666666666666667 + 0.13333333333333333333 * xy2 - 0.26666666666666666667 * y2)) / (2 * x2 - 1)); } return cmul(1. / (-15 + x2 * (90 + x2 * (-60 + 8 * x2))), C(x * (33 + x2 * (-28 + 4 * x2) + y2 * (18 - 4 * x2 + 4 * y2)), y * (-15 + x2 * (24 - 4 * x2) + y2 * (4 * x2 - 10 - 4 * y2)))); } // else { double D = spi2 * wImaginary(x); double y2 = y * y; return C(D + y2 * (D + x - 2 * D * x2) + y2 * y2 * (D * (0.5 - x2 * (2 - 0.66666666666666666667 * x2)) + x * (0.83333333333333333333 - 0.33333333333333333333 * x2)), y * (1 - 2 * D * x + y2 * 0.66666666666666666667 * (1 - x2 - D * x * (3 - 2 * x2)) + y2 * y2 * (0.26666666666666666667 - x2 * (0.6 - 0.13333333333333333333 * x2) - D * x * (1 - x2 * (1.3333333333333333333 - 0.26666666666666666667 * x2))))); } // return sinc(x) = sin(x)/x, given both x and sin(x) // [since we only use this in cases where sin(x) has already been computed] private static double sinc(double x, double sinx) { return fabs(x) < 1e-4 ? 1 - (0.1666666666666666666667) * x * x : sinx / x; } // sinh(x) via Taylor series, accurate to machine precision for |x| < 1e-2 private static double sinh_taylor(double x) { return x * (1 + (x * x) * (0.1666666666666666666667 + 0.00833333333333333333333 * (x * x))); } private static double sqr(double x) { return x * x; } // precomputed table of expa2n2[n-1] = exp(-a2*n*n) // for double-precision a2 = 0.26865... in FADDEEVA(w), below. private static double expa2n2[] = { 7.64405281671221563e-01, 3.41424527166548425e-01, 8.91072646929412548e-02, 1.35887299055460086e-02, 1.21085455253437481e-03, 6.30452613933449404e-05, 1.91805156577114683e-06, 3.40969447714832381e-08, 3.54175089099469393e-10, 2.14965079583260682e-12, 7.62368911833724354e-15, 1.57982797110681093e-17, 1.91294189103582677e-20, 1.35344656764205340e-23, 5.59535712428588720e-27, 1.35164257972401769e-30, 1.90784582843501167e-34, 1.57351920291442930e-38, 7.58312432328032845e-43, 2.13536275438697082e-47, 3.51352063787195769e-52, 3.37800830266396920e-57, 1.89769439468301000e-62, 6.22929926072668851e-68, 1.19481172006938722e-73, 1.33908181133005953e-79, 8.76924303483223939e-86, 3.35555576166254986e-92, 7.50264110688173024e-99, 9.80192200745410268e-106, 7.48265412822268959e-113, 3.33770122566809425e-120, 8.69934598159861140e-128, 1.32486951484088852e-135, 1.17898144201315253e-143, 6.13039120236180012e-152, 1.86258785950822098e-160, 3.30668408201432783e-169, 3.43017280887946235e-178, 2.07915397775808219e-187, 7.36384545323984966e-197, 1.52394760394085741e-206, 1.84281935046532100e-216, 1.30209553802992923e-226, 5.37588903521080531e-237, 1.29689584599763145e-247, 1.82813078022866562e-258, 1.50576355348684241e-269, 7.24692320799294194e-281, 2.03797051314726829e-292, 3.34880215927873807e-304, 0.0 // underflow (also prevents reads past array end, below) }; /** * Compute the Faddeeva or scaled complementary error function * @param z * @param relerr * @return w(z) = exp(-z^2) erfc(-iz) */ public static Complex w(Complex z, double relerr) { return C(w_i(C(z.getReal(), z.getImaginary()), relerr)); } private static cmplx w_i(cmplx z, double relerr) { if (creal(z) == 0.0) return C(erfcx(cimag(z)), creal(z)); // give correct sign of 0 in cimag(w) else if (cimag(z) == 0) return C(exp(-sqr(creal(z))), wImaginary(creal(z))); double a, a2, c; if (relerr <= DBL_EPSILON) { relerr = DBL_EPSILON; a = 0.518321480430085929872; // pi / sqrt(-log(eps*0.5)) c = 0.329973702884629072537; // (2/pi) * a; a2 = 0.268657157075235951582; // a^2 } else { // double pi = 3.14159265358979323846264338327950288419716939937510582; if (relerr > 0.1) relerr = 0.1; // not sensible to compute < 1 digit a = Math.PI / Math.sqrt(-Math.log(relerr * 0.5)); c = (2 / Math.PI) * a; a2 = a * a; } double x = fabs(creal(z)); double y = cimag(z), ya = fabs(y); cmplx ret = ZERO; // return value double sum1 = 0, sum2 = 0, sum3 = 0, sum4 = 0, sum5 = 0; // #define USE_CONTINUED_FRACTION 1 // 1 to use continued fraction for large |z| // #if USE_CONTINUED_FRACTION if (ya > 7 || (x > 6 // continued fraction is faster /*- As pointed out by M. Zaghloul, the continued fraction seems to give a large relative error in Re w(z) for |x| ~ 6 and small |y|, so use algorithm 816 in this region: */ && (ya > 0.1 || (x > 8 && ya > 1e-10) || x > 28))) { /*- Poppe & Wijers suggest using a number of terms nu = 3 + 1442 / (26*rho + 77) where rho = sqrt((x/x0)^2 + (y/y0)^2) where x0=6.3, y0=4.4. (They only use this expansion for rho >= 1, but rho a little less than 1 seems okay too.) Instead, I did my own fit to a slightly different function that avoids the hypotenuse calculation, using NLopt to minimize the sum of the squares of the errors in nu with the constraint that the estimated nu be >= minimum nu to attain machine precision. I also separate the regions where nu == 2 and nu == 1. */ final double ispi = ONE_OVER_SQRT_PI; // 1 / sqrt(pi) double xs = y < 0 ? -creal(z) : creal(z); // compute for -z if y < 0 if (x + ya > 4000) { // nu <= 2 if (x + ya > 1e7) { // nu == 1, w(z) = i/sqrt(pi) / z // scale to avoid overflow if (x > ya) { double yax = ya / xs; double denom = ispi / (xs + yax * ya); ret = C(denom * yax, denom); } else if (isinf(ya)) return ((isnan(x) || y < 0) ? C(NaN, NaN) : C(0, 0)); else { double xya = xs / ya; double denom = ispi / (xya * xs + ya); ret = C(denom, denom * xya); } } else { // nu == 2, w(z) = i/sqrt(pi) * z / (z*z - 0.5) double dr = xs * xs - ya * ya - 0.5, di = 2 * xs * ya; double denom = ispi / (dr * dr + di * di); ret = C(denom * (xs * di - ya * dr), denom * (xs * dr + ya * di)); } } else { // compute nu(z) estimate and do general continued fraction double c0 = 3.9, c1 = 11.398, c2 = 0.08254, c3 = 0.1421, c4 = 0.2023; // fit double nu = floor(c0 + c1 / (c2 * x + c3 * ya + c4)); double wr = xs, wi = ya; for (nu = 0.5 * (nu - 1); nu > 0.4; nu -= 0.5) { // w <- z - nu/w: double denom = nu / (wr * wr + wi * wi); wr = xs - wr * denom; wi = ya + wi * denom; } { // w(z) = i/sqrt(pi) / w: double denom = ispi / (wr * wr + wi * wi); ret = C(denom * wi, denom * wr); } } if (y < 0) { // use w(z) = 2.0*exp(-z*z) - w(-z), // but be careful of overflow in exp(-z*z) // = exp(-(xs*xs-ya*ya) -2*i*xs*ya) System.err.println((ya - xs) + " * " + (xs + ya) + " = " + (ya - xs) * (xs + ya)); return csub(cmul(2.0, cexp(C((ya - xs) * (xs + ya), 2 * xs * y))), ret); } // else return ret; } // #else // !USE_CONTINUED_FRACTION // #endif // !USE_CONTINUED_FRACTION /*- Note: The test that seems to be suggested in the paper is x < sqrt(-log(DBL_MIN)), about 26.6, since otherwise exp(-x^2) underflows to zero and sum1,sum2,sum4 are zero. However, long before this occurs, the sum1,sum2,sum4 contributions are negligible in double precision; I find that this happens for x > about 6, for all y. On the other hand, I find that the case where we compute all of the sums is faster (at least with the precomputed expa2n2 table) until about x=10. Furthermore, if we try to compute all of the sums for x > 20, I find that we sometimes run into numerical problems because underflow/overflow problems start to appear in the various coefficients of the sums, below. Therefore, we use x < 10 here. */ else if (x < 10) { double prod2ax = 1, prodm2ax = 1; double expx2; if (isnan(y)) return C(y, y); /*- Somewhat ugly copy-and-paste duplication here, but I see significant speedups from using the special-case code with the precomputed exponential, and the x < 5e-4 special case is needed for accuracy. */ if (relerr == DBL_EPSILON) { // use precomputed exp(-a2*(n*n)) table if (x < 5e-4) { // compute sum4 and sum5 together as sum5-sum4 double x2 = x * x; expx2 = 1 - x2 * (1 - 0.5 * x2); // exp(-x*x) via Taylor // compute exp(2*a*x) and exp(-2*a*x) via Taylor, to double precision double ax2 = 1.036642960860171859744 * x; // 2*a*x double exp2ax = 1 + ax2 * (1 + ax2 * (0.5 + 0.166666666666666666667 * ax2)); double expm2ax = 1 - ax2 * (1 - ax2 * (0.5 - 0.166666666666666666667 * ax2)); for (int n = 1; true; ++n) { double coef = expa2n2[n - 1] * expx2 / (a2 * (n * n) + y * y); prod2ax *= exp2ax; prodm2ax *= expm2ax; sum1 += coef; sum2 += coef * prodm2ax; sum3 += coef * prod2ax; // really = sum5 - sum4 sum5 += coef * (2 * a) * n * sinh_taylor((2 * a) * n * x); // test convergence via sum3 if (coef * prod2ax < relerr * sum3) break; } } else { // x > 5e-4, compute sum4 and sum5 separately expx2 = exp(-x * x); double exp2ax = exp((2 * a) * x), expm2ax = 1 / exp2ax; for (int n = 1; true; ++n) { double coef = expa2n2[n - 1] * expx2 / (a2 * (n * n) + y * y); prod2ax *= exp2ax; prodm2ax *= expm2ax; sum1 += coef; sum2 += coef * prodm2ax; sum4 += (coef * prodm2ax) * (a * n); sum3 += coef * prod2ax; sum5 += (coef * prod2ax) * (a * n); // test convergence via sum5, since this sum has the slowest decay if ((coef * prod2ax) * (a * n) < relerr * sum5) break; } } } else { // relerr != DBL_EPSILON, compute exp(-a2*(n*n)) on the fly double exp2ax = exp((2 * a) * x), expm2ax = 1 / exp2ax; if (x < 5e-4) { // compute sum4 and sum5 together as sum5-sum4 double x2 = x * x; expx2 = 1 - x2 * (1 - 0.5 * x2); // exp(-x*x) via Taylor for (int n = 1; true; ++n) { double coef = exp(-a2 * (n * n)) * expx2 / (a2 * (n * n) + y * y); prod2ax *= exp2ax; prodm2ax *= expm2ax; sum1 += coef; sum2 += coef * prodm2ax; sum3 += coef * prod2ax; // really = sum5 - sum4 sum5 += coef * (2 * a) * n * sinh_taylor((2 * a) * n * x); // test convergence via sum3 if (coef * prod2ax < relerr * sum3) break; } } else { // x > 5e-4, compute sum4 and sum5 separately expx2 = exp(-x * x); for (int n = 1; true; ++n) { double coef = exp(-a2 * (n * n)) * expx2 / (a2 * (n * n) + y * y); prod2ax *= exp2ax; prodm2ax *= expm2ax; sum1 += coef; sum2 += coef * prodm2ax; sum4 += (coef * prodm2ax) * (a * n); sum3 += coef * prod2ax; sum5 += (coef * prod2ax) * (a * n); // test convergence via sum5, since this sum has the slowest decay if ((coef * prod2ax) * (a * n) < relerr * sum5) break; } } } double expx2erfcxy = // avoid spurious overflow for large negative y y > -6 // for y < -6, erfcx(y) = 2*exp(y*y) to double precision ? expx2 * erfcx(y) : 2 * exp(y * y - x * x); if (y > 5) { // imaginary terms cancel double sinxy = sin(x * y); ret = C((expx2erfcxy - c * y * sum1) * cos(2 * x * y) + (c * x * expx2) * sinxy * sinc(x * y, sinxy)); } else { double xs = creal(z); double sinxy = sin(xs * y); double sin2xy = sin(2 * xs * y), cos2xy = cos(2 * xs * y); double coef1 = expx2erfcxy - c * y * sum1; double coef2 = c * xs * expx2; ret = C(coef1 * cos2xy + coef2 * sinxy * sinc(xs * y, sinxy), coef2 * sinc(2 * xs * y, sin2xy) - coef1 * sin2xy); } } else { // x large: only sum3 & sum5 contribute (see above note) if (isnan(x)) return C(x, x); if (isnan(y)) return C(y, y); // #if USE_CONTINUED_FRACTION ret = C(exp(-x * x)); // |y| < 1e-10, so we only need exp(-x*x) term // #else // #endif // (round instead of ceil as in original paper; note that x/a > 1 here) double n0 = floor(x / a + 0.5); // sum in both directions, starting at n0 double dx = a * n0 - x; sum3 = exp(-dx * dx) / (a2 * (n0 * n0) + y * y); sum5 = a * n0 * sum3; double exp1 = exp(4 * a * dx), exp1dn = 1; int dn; boolean loop = true; for (dn = 1; n0 - dn > 0; ++dn) { // loop over n0-dn and n0+dn terms double np = n0 + dn, nm = n0 - dn; double tp = exp(-sqr(a * dn + dx)); double tm = tp * (exp1dn *= exp1); // trick to get tm from tp tp /= (a2 * (np * np) + y * y); tm /= (a2 * (nm * nm) + y * y); sum3 += tp + tm; sum5 += a * (np * tp + nm * tm); if (a * (np * tp + nm * tm) < relerr * sum5) { loop = false; break; } } while (loop) { // loop over n0+dn terms only (since n0-dn <= 0) double np = n0 + dn++; double tp = exp(-sqr(a * dn + dx)) / (a2 * (np * np) + y * y); sum3 += tp; sum5 += a * np * tp; if (a * np * tp < relerr * sum5) break; } } // finish: return cadd(ret, C((0.5 * c) * y * (sum2 + sum3), (0.5 * c) * copysign(sum5 - sum4, creal(z)))); } /**- * Compute the scaled complementary error function * <pre> * erfcx(x) = exp(x^2) erfc(x) function, for real x, written by * Steven G. Johnson, October 2012. * * This function combines a few different ideas. * * First, for x > 50, it uses a continued-fraction expansion (same as * for the Faddeeva function, but with algebraic simplifications for z=i*x). * * Second, for 0 <= x <= 50, it uses Chebyshev polynomial approximations, * but with two twists: * * a) It maps x to y = 4 / (4+x) in [0,1]. This simple transformation, * inspired by a similar transformation in the octave-forge/specfun * erfcx by Soren Hauberg, results in much faster Chebyshev convergence * than other simple transformations I have examined. * * b) Instead of using a single Chebyshev polynomial for the entire * [0,1] y interval, we break the interval up into 100 equal * subintervals, with a switch/lookup table, and use much lower * degree Chebyshev polynomials in each subinterval. This greatly * improves performance in my tests. * * For x < 0, we use the relationship erfcx(-x) = 2 exp(x^2) - erfc(x), * with the usual checks for overflow etcetera. * * Performance-wise, it seems to be substantially faster than either * the SLATEC DERFC function [or an erfcx function derived therefrom] * or Cody's CALERF function (from netlib.org/specfun), while * retaining near machine precision in accuracy. * </pre> * @param x * @return erfcx(x) = exp(x^2) erfc(x) */ public static double erfcx(double x) { if (x >= 0) { if (x > 50) { // continued-fraction expansion is faster double ispi = 0.56418958354775628694807945156; // 1 / sqrt(pi) if (x > 5e7) // 1-term expansion, important to avoid overflow return ispi / x; /* * 5-term expansion (rely on compiler for CSE), simplified from: ispi / (x+0.5/(x+1/(x+1.5/(x+2/x)))) */ double x2 = x * x; return ispi * ((x2) * (x2 + 4.5) + 2) / (x * ((x2) * (x2 + 5) + 3.75)); } return erfcx_y100(400 / (4 + x)); } // else return x < -26.7 ? HUGE_VAL : (x < -6.1 ? 2 * exp(x * x) : 2 * exp(x * x) - erfcx_y100(400 / (4 - x))); } /*- Given y100=100*y, where y = 4/(4+x) for x >= 0, compute erfc(x). Uses a look-up table of 100 different Chebyshev polynomials for y intervals [0,0.01], [0.01,0.02], ...., [0.99,1], generated with the help of Maple and a little shell script. This allows the Chebyshev polynomials to be of significantly lower degree (about 1/4) compared to fitting the whole [0,1] interval with a single polynomial. */ private static double erfcx_y100(double y100) { switch ((int) y100) { case 0: { double t = 2 * y100 - 1; return 0.70878032454106438663e-3 + (0.71234091047026302958e-3 + (0.35779077297597742384e-5 + (0.17403143962587937815e-7 + (0.81710660047307788845e-10 + (0.36885022360434957634e-12 + 0.15917038551111111111e-14 * t) * t) * t) * t) * t) * t; } case 1: { double t = 2 * y100 - 3; return 0.21479143208285144230e-2 + (0.72686402367379996033e-3 + (0.36843175430938995552e-5 + (0.18071841272149201685e-7 + (0.85496449296040325555e-10 + (0.38852037518534291510e-12 + 0.16868473576888888889e-14 * t) * t) * t) * t) * t) * t; } case 2: { double t = 2 * y100 - 5; return 0.36165255935630175090e-2 + (0.74182092323555510862e-3 + (0.37948319957528242260e-5 + (0.18771627021793087350e-7 + (0.89484715122415089123e-10 + (0.40935858517772440862e-12 + 0.17872061464888888889e-14 * t) * t) * t) * t) * t) * t; } case 3: { double t = 2 * y100 - 7; return 0.51154983860031979264e-2 + (0.75722840734791660540e-3 + (0.39096425726735703941e-5 + (0.19504168704300468210e-7 + (0.93687503063178993915e-10 + (0.43143925959079664747e-12 + 0.18939926435555555556e-14 * t) * t) * t) * t) * t) * t; } case 4: { double t = 2 * y100 - 9; return 0.66457513172673049824e-2 + (0.77310406054447454920e-3 + (0.40289510589399439385e-5 + (0.20271233238288381092e-7 + (0.98117631321709100264e-10 + (0.45484207406017752971e-12 + 0.20076352213333333333e-14 * t) * t) * t) * t) * t) * t; } case 5: { double t = 2 * y100 - 11; return 0.82082389970241207883e-2 + (0.78946629611881710721e-3 + (0.41529701552622656574e-5 + (0.21074693344544655714e-7 + (0.10278874108587317989e-9 + (0.47965201390613339638e-12 + 0.21285907413333333333e-14 * t) * t) * t) * t) * t) * t; } case 6: { double t = 2 * y100 - 13; return 0.98039537275352193165e-2 + (0.80633440108342840956e-3 + (0.42819241329736982942e-5 + (0.21916534346907168612e-7 + (0.10771535136565470914e-9 + (0.50595972623692822410e-12 + 0.22573462684444444444e-14 * t) * t) * t) * t) * t) * t; } case 7: { double t = 2 * y100 - 15; return 0.11433927298290302370e-1 + (0.82372858383196561209e-3 + (0.44160495311765438816e-5 + (0.22798861426211986056e-7 + (0.11291291745879239736e-9 + (0.53386189365816880454e-12 + 0.23944209546666666667e-14 * t) * t) * t) * t) * t) * t; } case 8: { double t = 2 * y100 - 17; return 0.13099232878814653979e-1 + (0.84167002467906968214e-3 + (0.45555958988457506002e-5 + (0.23723907357214175198e-7 + (0.11839789326602695603e-9 + (0.56346163067550237877e-12 + 0.25403679644444444444e-14 * t) * t) * t) * t) * t) * t; } case 9: { double t = 2 * y100 - 19; return 0.14800987015587535621e-1 + (0.86018092946345943214e-3 + (0.47008265848816866105e-5 + (0.24694040760197315333e-7 + (0.12418779768752299093e-9 + (0.59486890370320261949e-12 + 0.26957764568888888889e-14 * t) * t) * t) * t) * t) * t; } case 10: { double t = 2 * y100 - 21; return 0.16540351739394069380e-1 + (0.87928458641241463952e-3 + (0.48520195793001753903e-5 + (0.25711774900881709176e-7 + (0.13030128534230822419e-9 + (0.62820097586874779402e-12 + 0.28612737351111111111e-14 * t) * t) * t) * t) * t) * t; } case 11: { double t = 2 * y100 - 23; return 0.18318536789842392647e-1 + (0.89900542647891721692e-3 + (0.50094684089553365810e-5 + (0.26779777074218070482e-7 + (0.13675822186304615566e-9 + (0.66358287745352705725e-12 + 0.30375273884444444444e-14 * t) * t) * t) * t) * t) * t; } case 12: { double t = 2 * y100 - 25; return 0.20136801964214276775e-1 + (0.91936908737673676012e-3 + (0.51734830914104276820e-5 + (0.27900878609710432673e-7 + (0.14357976402809042257e-9 + (0.70114790311043728387e-12 + 0.32252476000000000000e-14 * t) * t) * t) * t) * t) * t; } case 13: { double t = 2 * y100 - 27; return 0.21996459598282740954e-1 + (0.94040248155366777784e-3 + (0.53443911508041164739e-5 + (0.29078085538049374673e-7 + (0.15078844500329731137e-9 + (0.74103813647499204269e-12 + 0.34251892320000000000e-14 * t) * t) * t) * t) * t) * t; } case 14: { double t = 2 * y100 - 29; return 0.23898877187226319502e-1 + (0.96213386835900177540e-3 + (0.55225386998049012752e-5 + (0.30314589961047687059e-7 + (0.15840826497296335264e-9 + (0.78340500472414454395e-12 + 0.36381553564444444445e-14 * t) * t) * t) * t) * t) * t; } case 15: { double t = 2 * y100 - 31; return 0.25845480155298518485e-1 + (0.98459293067820123389e-3 + (0.57082915920051843672e-5 + (0.31613782169164830118e-7 + (0.16646478745529630813e-9 + (0.82840985928785407942e-12 + 0.38649975768888888890e-14 * t) * t) * t) * t) * t) * t; } case 16: { double t = 2 * y100 - 33; return 0.27837754783474696598e-1 + (0.10078108563256892757e-2 + (0.59020366493792212221e-5 + (0.32979263553246520417e-7 + (0.17498524159268458073e-9 + (0.87622459124842525110e-12 + 0.41066206488888888890e-14 * t) * t) * t) * t) * t) * t; } case 17: { double t = 2 * y100 - 35; return 0.29877251304899307550e-1 + (0.10318204245057349310e-2 + (0.61041829697162055093e-5 + (0.34414860359542720579e-7 + (0.18399863072934089607e-9 + (0.92703227366365046533e-12 + 0.43639844053333333334e-14 * t) * t) * t) * t) * t) * t; } case 18: { double t = 2 * y100 - 37; return 0.31965587178596443475e-1 + (0.10566560976716574401e-2 + (0.63151633192414586770e-5 + (0.35924638339521924242e-7 + (0.19353584758781174038e-9 + (0.98102783859889264382e-12 + 0.46381060817777777779e-14 * t) * t) * t) * t) * t) * t; } case 19: { double t = 2 * y100 - 39; return 0.34104450552588334840e-1 + (0.10823541191350532574e-2 + (0.65354356159553934436e-5 + (0.37512918348533521149e-7 + (0.20362979635817883229e-9 + (0.10384187833037282363e-11 + 0.49300625262222222221e-14 * t) * t) * t) * t) * t) * t; } case 20: { double t = 2 * y100 - 41; return 0.36295603928292425716e-1 + (0.11089526167995268200e-2 + (0.67654845095518363577e-5 + (0.39184292949913591646e-7 + (0.21431552202133775150e-9 + (0.10994259106646731797e-11 + 0.52409949102222222221e-14 * t) * t) * t) * t) * t) * t; } case 21: { double t = 2 * y100 - 43; return 0.38540888038840509795e-1 + (0.11364917134175420009e-2 + (0.70058230641246312003e-5 + (0.40943644083718586939e-7 + (0.22563034723692881631e-9 + (0.11642841011361992885e-11 + 0.55721092871111111110e-14 * t) * t) * t) * t) * t) * t; } case 22: { double t = 2 * y100 - 45; return 0.40842225954785960651e-1 + (0.11650136437945673891e-2 + (0.72569945502343006619e-5 + (0.42796161861855042273e-7 + (0.23761401711005024162e-9 + (0.12332431172381557035e-11 + 0.59246802364444444445e-14 * t) * t) * t) * t) * t) * t; } case 23: { double t = 2 * y100 - 47; return 0.43201627431540222422e-1 + (0.11945628793917272199e-2 + (0.75195743532849206263e-5 + (0.44747364553960993492e-7 + (0.25030885216472953674e-9 + (0.13065684400300476484e-11 + 0.63000532853333333334e-14 * t) * t) * t) * t) * t) * t; } case 24: { double t = 2 * y100 - 49; return 0.45621193513810471438e-1 + (0.12251862608067529503e-2 + (0.77941720055551920319e-5 + (0.46803119830954460212e-7 + (0.26375990983978426273e-9 + (0.13845421370977119765e-11 + 0.66996477404444444445e-14 * t) * t) * t) * t) * t) * t; } case 25: { double t = 2 * y100 - 51; return 0.48103121413299865517e-1 + (0.12569331386432195113e-2 + (0.80814333496367673980e-5 + (0.48969667335682018324e-7 + (0.27801515481905748484e-9 + (0.14674637611609884208e-11 + 0.71249589351111111110e-14 * t) * t) * t) * t) * t) * t; } case 26: { double t = 2 * y100 - 53; return 0.50649709676983338501e-1 + (0.12898555233099055810e-2 + (0.83820428414568799654e-5 + (0.51253642652551838659e-7 + (0.29312563849675507232e-9 + (0.15556512782814827846e-11 + 0.75775607822222222221e-14 * t) * t) * t) * t) * t) * t; } case 27: { double t = 2 * y100 - 55; return 0.53263363664388864181e-1 + (0.13240082443256975769e-2 + (0.86967260015007658418e-5 + (0.53662102750396795566e-7 + (0.30914568786634796807e-9 + (0.16494420240828493176e-11 + 0.80591079644444444445e-14 * t) * t) * t) * t) * t) * t; } case 28: { double t = 2 * y100 - 57; return 0.55946601353500013794e-1 + (0.13594491197408190706e-2 + (0.90262520233016380987e-5 + (0.56202552975056695376e-7 + (0.32613310410503135996e-9 + (0.17491936862246367398e-11 + 0.85713381688888888890e-14 * t) * t) * t) * t) * t) * t; } case 29: { double t = 2 * y100 - 59; return 0.58702059496154081813e-1 + (0.13962391363223647892e-2 + (0.93714365487312784270e-5 + (0.58882975670265286526e-7 + (0.34414937110591753387e-9 + (0.18552853109751857859e-11 + 0.91160736711111111110e-14 * t) * t) * t) * t) * t) * t; } case 30: { double t = 2 * y100 - 61; return 0.61532500145144778048e-1 + (0.14344426411912015247e-2 + (0.97331446201016809696e-5 + (0.61711860507347175097e-7 + (0.36325987418295300221e-9 + (0.19681183310134518232e-11 + 0.96952238400000000000e-14 * t) * t) * t) * t) * t) * t; } case 31: { double t = 2 * y100 - 63; return 0.64440817576653297993e-1 + (0.14741275456383131151e-2 + (0.10112293819576437838e-4 + (0.64698236605933246196e-7 + (0.38353412915303665586e-9 + (0.20881176114385120186e-11 + 0.10310784480000000000e-13 * t) * t) * t) * t) * t) * t; } case 32: { double t = 2 * y100 - 65; return 0.67430045633130393282e-1 + (0.15153655418916540370e-2 + (0.10509857606888328667e-4 + (0.67851706529363332855e-7 + (0.40504602194811140006e-9 + (0.22157325110542534469e-11 + 0.10964842115555555556e-13 * t) * t) * t) * t) * t) * t; } case 33: { double t = 2 * y100 - 67; return 0.70503365513338850709e-1 + (0.15582323336495709827e-2 + (0.10926868866865231089e-4 + (0.71182482239613507542e-7 + (0.42787405890153386710e-9 + (0.23514379522274416437e-11 + 0.11659571751111111111e-13 * t) * t) * t) * t) * t) * t; } case 34: { double t = 2 * y100 - 69; return 0.73664114037944596353e-1 + (0.16028078812438820413e-2 + (0.11364423678778207991e-4 + (0.74701423097423182009e-7 + (0.45210162777476488324e-9 + (0.24957355004088569134e-11 + 0.12397238257777777778e-13 * t) * t) * t) * t) * t) * t; } case 35: { double t = 2 * y100 - 71; return 0.76915792420819562379e-1 + (0.16491766623447889354e-2 + (0.11823685320041302169e-4 + (0.78420075993781544386e-7 + (0.47781726956916478925e-9 + (0.26491544403815724749e-11 + 0.13180196462222222222e-13 * t) * t) * t) * t) * t) * t; } case 36: { double t = 2 * y100 - 73; return 0.80262075578094612819e-1 + (0.16974279491709504117e-2 + (0.12305888517309891674e-4 + (0.82350717698979042290e-7 + (0.50511496109857113929e-9 + (0.28122528497626897696e-11 + 0.14010889635555555556e-13 * t) * t) * t) * t) * t) * t; } case 37: { double t = 2 * y100 - 75; return 0.83706822008980357446e-1 + (0.17476561032212656962e-2 + (0.12812343958540763368e-4 + (0.86506399515036435592e-7 + (0.53409440823869467453e-9 + (0.29856186620887555043e-11 + 0.14891851591111111111e-13 * t) * t) * t) * t) * t) * t; } case 38: { double t = 2 * y100 - 77; return 0.87254084284461718231e-1 + (0.17999608886001962327e-2 + (0.13344443080089492218e-4 + (0.90900994316429008631e-7 + (0.56486134972616465316e-9 + (0.31698707080033956934e-11 + 0.15825697795555555556e-13 * t) * t) * t) * t) * t) * t; } case 39: { double t = 2 * y100 - 79; return 0.90908120182172748487e-1 + (0.18544478050657699758e-2 + (0.13903663143426120077e-4 + (0.95549246062549906177e-7 + (0.59752787125242054315e-9 + (0.33656597366099099413e-11 + 0.16815130613333333333e-13 * t) * t) * t) * t) * t) * t; } case 40: { double t = 2 * y100 - 81; return 0.94673404508075481121e-1 + (0.19112284419887303347e-2 + (0.14491572616545004930e-4 + (0.10046682186333613697e-6 + (0.63221272959791000515e-9 + (0.35736693975589130818e-11 + 0.17862931591111111111e-13 * t) * t) * t) * t) * t) * t; } case 41: { double t = 2 * y100 - 83; return 0.98554641648004456555e-1 + (0.19704208544725622126e-2 + (0.15109836875625443935e-4 + (0.10567036667675984067e-6 + (0.66904168640019354565e-9 + (0.37946171850824333014e-11 + 0.18971959040000000000e-13 * t) * t) * t) * t) * t) * t; } case 42: { double t = 2 * y100 - 85; return 0.10255677889470089531e0 + (0.20321499629472857418e-2 + (0.15760224242962179564e-4 + (0.11117756071353507391e-6 + (0.70814785110097658502e-9 + (0.40292553276632563925e-11 + 0.20145143075555555556e-13 * t) * t) * t) * t) * t) * t; } case 43: { double t = 2 * y100 - 87; return 0.10668502059865093318e0 + (0.20965479776148731610e-2 + (0.16444612377624983565e-4 + (0.11700717962026152749e-6 + (0.74967203250938418991e-9 + (0.42783716186085922176e-11 + 0.21385479360000000000e-13 * t) * t) * t) * t) * t) * t; } case 44: { double t = 2 * y100 - 89; return 0.11094484319386444474e0 + (0.21637548491908170841e-2 + (0.17164995035719657111e-4 + (0.12317915750735938089e-6 + (0.79376309831499633734e-9 + (0.45427901763106353914e-11 + 0.22696025653333333333e-13 * t) * t) * t) * t) * t) * t; } case 45: { double t = 2 * y100 - 91; return 0.11534201115268804714e0 + (0.22339187474546420375e-2 + (0.17923489217504226813e-4 + (0.12971465288245997681e-6 + (0.84057834180389073587e-9 + (0.48233721206418027227e-11 + 0.24079890062222222222e-13 * t) * t) * t) * t) * t) * t; } case 46: { double t = 2 * y100 - 93; return 0.11988259392684094740e0 + (0.23071965691918689601e-2 + (0.18722342718958935446e-4 + (0.13663611754337957520e-6 + (0.89028385488493287005e-9 + (0.51210161569225846701e-11 + 0.25540227111111111111e-13 * t) * t) * t) * t) * t) * t; } case 47: { double t = 2 * y100 - 95; return 0.12457298393509812907e0 + (0.23837544771809575380e-2 + (0.19563942105711612475e-4 + (0.14396736847739470782e-6 + (0.94305490646459247016e-9 + (0.54366590583134218096e-11 + 0.27080225920000000000e-13 * t) * t) * t) * t) * t) * t; } case 48: { double t = 2 * y100 - 97; return 0.12941991566142438816e0 + (0.24637684719508859484e-2 + (0.20450821127475879816e-4 + (0.15173366280523906622e-6 + (0.99907632506389027739e-9 + (0.57712760311351625221e-11 + 0.28703099555555555556e-13 * t) * t) * t) * t) * t) * t; } case 49: { double t = 2 * y100 - 99; return 0.13443048593088696613e0 + (0.25474249981080823877e-2 + (0.21385669591362915223e-4 + (0.15996177579900443030e-6 + (0.10585428844575134013e-8 + (0.61258809536787882989e-11 + 0.30412080142222222222e-13 * t) * t) * t) * t) * t) * t; } case 50: { double t = 2 * y100 - 101; return 0.13961217543434561353e0 + (0.26349215871051761416e-2 + (0.22371342712572567744e-4 + (0.16868008199296822247e-6 + (0.11216596910444996246e-8 + (0.65015264753090890662e-11 + 0.32210394506666666666e-13 * t) * t) * t) * t) * t) * t; } case 51: { double t = 2 * y100 - 103; return 0.14497287157673800690e0 + (0.27264675383982439814e-2 + (0.23410870961050950197e-4 + (0.17791863939526376477e-6 + (0.11886425714330958106e-8 + (0.68993039665054288034e-11 + 0.34101266222222222221e-13 * t) * t) * t) * t) * t) * t; } case 52: { double t = 2 * y100 - 105; return 0.15052089272774618151e0 + (0.28222846410136238008e-2 + (0.24507470422713397006e-4 + (0.18770927679626136909e-6 + (0.12597184587583370712e-8 + (0.73203433049229821618e-11 + 0.36087889048888888890e-13 * t) * t) * t) * t) * t) * t; } case 53: { double t = 2 * y100 - 107; return 0.15626501395774612325e0 + (0.29226079376196624949e-2 + (0.25664553693768450545e-4 + (0.19808568415654461964e-6 + (0.13351257759815557897e-8 + (0.77658124891046760667e-11 + 0.38173420035555555555e-13 * t) * t) * t) * t) * t) * t; } case 54: { double t = 2 * y100 - 109; return 0.16221449434620737567e0 + (0.30276865332726475672e-2 + (0.26885741326534564336e-4 + (0.20908350604346384143e-6 + (0.14151148144240728728e-8 + (0.82369170665974313027e-11 + 0.40360957457777777779e-13 * t) * t) * t) * t) * t) * t; } case 55: { double t = 2 * y100 - 111; return 0.16837910595412130659e0 + (0.31377844510793082301e-2 + (0.28174873844911175026e-4 + (0.22074043807045782387e-6 + (0.14999481055996090039e-8 + (0.87348993661930809254e-11 + 0.42653528977777777779e-13 * t) * t) * t) * t) * t) * t; } case 56: { double t = 2 * y100 - 113; return 0.17476916455659369953e0 + (0.32531815370903068316e-2 + (0.29536024347344364074e-4 + (0.23309632627767074202e-6 + (0.15899007843582444846e-8 + (0.92610375235427359475e-11 + 0.45054073102222222221e-13 * t) * t) * t) * t) * t) * t; } case 57: { double t = 2 * y100 - 115; return 0.18139556223643701364e0 + (0.33741744168096996041e-2 + (0.30973511714709500836e-4 + (0.24619326937592290996e-6 + (0.16852609412267750744e-8 + (0.98166442942854895573e-11 + 0.47565418097777777779e-13 * t) * t) * t) * t) * t) * t; } case 58: { double t = 2 * y100 - 117; return 0.18826980194443664549e0 + (0.35010775057740317997e-2 + (0.32491914440014267480e-4 + (0.26007572375886319028e-6 + (0.17863299617388376116e-8 + (0.10403065638343878679e-10 + 0.50190265831111111110e-13 * t) * t) * t) * t) * t) * t; } case 59: { double t = 2 * y100 - 119; return 0.19540403413693967350e0 + (0.36342240767211326315e-2 + (0.34096085096200907289e-4 + (0.27479061117017637474e-6 + (0.18934228504790032826e-8 + (0.11021679075323598664e-10 + 0.52931171733333333334e-13 * t) * t) * t) * t) * t) * t; } case 60: { double t = 2 * y100 - 121; return 0.20281109560651886959e0 + (0.37739673859323597060e-2 + (0.35791165457592409054e-4 + (0.29038742889416172404e-6 + (0.20068685374849001770e-8 + (0.11673891799578381999e-10 + 0.55790523093333333334e-13 * t) * t) * t) * t) * t) * t; } case 61: { double t = 2 * y100 - 123; return 0.21050455062669334978e0 + (0.39206818613925652425e-2 + (0.37582602289680101704e-4 + (0.30691836231886877385e-6 + (0.21270101645763677824e-8 + (0.12361138551062899455e-10 + 0.58770520160000000000e-13 * t) * t) * t) * t) * t) * t; } case 62: { double t = 2 * y100 - 125; return 0.21849873453703332479e0 + (0.40747643554689586041e-2 + (0.39476163820986711501e-4 + (0.32443839970139918836e-6 + (0.22542053491518680200e-8 + (0.13084879235290858490e-10 + 0.61873153262222222221e-13 * t) * t) * t) * t) * t) * t; } case 63: { double t = 2 * y100 - 127; return 0.22680879990043229327e0 + (0.42366354648628516935e-2 + (0.41477956909656896779e-4 + (0.34300544894502810002e-6 + (0.23888264229264067658e-8 + (0.13846596292818514601e-10 + 0.65100183751111111110e-13 * t) * t) * t) * t) * t) * t; } case 64: { double t = 2 * y100 - 129; return 0.23545076536988703937e0 + (0.44067409206365170888e-2 + (0.43594444916224700881e-4 + (0.36268045617760415178e-6 + (0.25312606430853202748e-8 + (0.14647791812837903061e-10 + 0.68453122631111111110e-13 * t) * t) * t) * t) * t) * t; } case 65: { double t = 2 * y100 - 131; return 0.24444156740777432838e0 + (0.45855530511605787178e-2 + (0.45832466292683085475e-4 + (0.38352752590033030472e-6 + (0.26819103733055603460e-8 + (0.15489984390884756993e-10 + 0.71933206364444444445e-13 * t) * t) * t) * t) * t) * t; } case 66: { double t = 2 * y100 - 133; return 0.25379911500634264643e0 + (0.47735723208650032167e-2 + (0.48199253896534185372e-4 + (0.40561404245564732314e-6 + (0.28411932320871165585e-8 + (0.16374705736458320149e-10 + 0.75541379822222222221e-13 * t) * t) * t) * t) * t) * t; } case 67: { double t = 2 * y100 - 135; return 0.26354234756393613032e0 + (0.49713289477083781266e-2 + (0.50702455036930367504e-4 + (0.42901079254268185722e-6 + (0.30095422058900481753e-8 + (0.17303497025347342498e-10 + 0.79278273368888888890e-13 * t) * t) * t) * t) * t) * t; } case 68: { double t = 2 * y100 - 137; return 0.27369129607732343398e0 + (0.51793846023052643767e-2 + (0.53350152258326602629e-4 + (0.45379208848865015485e-6 + (0.31874057245814381257e-8 + (0.18277905010245111046e-10 + 0.83144182364444444445e-13 * t) * t) * t) * t) * t) * t; } case 69: { double t = 2 * y100 - 139; return 0.28426714781640316172e0 + (0.53983341916695141966e-2 + (0.56150884865255810638e-4 + (0.48003589196494734238e-6 + (0.33752476967570796349e-8 + (0.19299477888083469086e-10 + 0.87139049137777777779e-13 * t) * t) * t) * t) * t) * t; } case 70: { double t = 2 * y100 - 141; return 0.29529231465348519920e0 + (0.56288077305420795663e-2 + (0.59113671189913307427e-4 + (0.50782393781744840482e-6 + (0.35735475025851713168e-8 + (0.20369760937017070382e-10 + 0.91262442613333333334e-13 * t) * t) * t) * t) * t) * t; } case 71: { double t = 2 * y100 - 143; return 0.30679050522528838613e0 + (0.58714723032745403331e-2 + (0.62248031602197686791e-4 + (0.53724185766200945789e-6 + (0.37827999418960232678e-8 + (0.21490291930444538307e-10 + 0.95513539182222222221e-13 * t) * t) * t) * t) * t) * t; } case 72: { double t = 2 * y100 - 145; return 0.31878680111173319425e0 + (0.61270341192339103514e-2 + (0.65564012259707640976e-4 + (0.56837930287837738996e-6 + (0.40035151353392378882e-8 + (0.22662596341239294792e-10 + 0.99891109760000000000e-13 * t) * t) * t) * t) * t) * t; } case 73: { double t = 2 * y100 - 147; return 0.33130773722152622027e0 + (0.63962406646798080903e-2 + (0.69072209592942396666e-4 + (0.60133006661885941812e-6 + (0.42362183765883466691e-8 + (0.23888182347073698382e-10 + 0.10439349811555555556e-12 * t) * t) * t) * t) * t) * t; } case 74: { double t = 2 * y100 - 149; return 0.34438138658041336523e0 + (0.66798829540414007258e-2 + (0.72783795518603561144e-4 + (0.63619220443228800680e-6 + (0.44814499336514453364e-8 + (0.25168535651285475274e-10 + 0.10901861383111111111e-12 * t) * t) * t) * t) * t) * t; } case 75: { double t = 2 * y100 - 151; return 0.35803744972380175583e0 + (0.69787978834882685031e-2 + (0.76710543371454822497e-4 + (0.67306815308917386747e-6 + (0.47397647975845228205e-8 + (0.26505114141143050509e-10 + 0.11376390933333333333e-12 * t) * t) * t) * t) * t) * t; } case 76: { double t = 2 * y100 - 153; return 0.37230734890119724188e0 + (0.72938706896461381003e-2 + (0.80864854542670714092e-4 + (0.71206484718062688779e-6 + (0.50117323769745883805e-8 + (0.27899342394100074165e-10 + 0.11862637614222222222e-12 * t) * t) * t) * t) * t) * t; } case 77: { double t = 2 * y100 - 155; return 0.38722432730555448223e0 + (0.76260375162549802745e-2 + (0.85259785810004603848e-4 + (0.75329383305171327677e-6 + (0.52979361368388119355e-8 + (0.29352606054164086709e-10 + 0.12360253370666666667e-12 * t) * t) * t) * t) * t) * t; } case 78: { double t = 2 * y100 - 157; return 0.40282355354616940667e0 + (0.79762880915029728079e-2 + (0.89909077342438246452e-4 + (0.79687137961956194579e-6 + (0.55989731807360403195e-8 + (0.30866246101464869050e-10 + 0.12868841946666666667e-12 * t) * t) * t) * t) * t) * t; } case 79: { double t = 2 * y100 - 159; return 0.41914223158913787649e0 + (0.83456685186950463538e-2 + (0.94827181359250161335e-4 + (0.84291858561783141014e-6 + (0.59154537751083485684e-8 + (0.32441553034347469291e-10 + 0.13387957943111111111e-12 * t) * t) * t) * t) * t) * t; } case 80: { double t = 2 * y100 - 161; return 0.43621971639463786896e0 + (0.87352841828289495773e-2 + (0.10002929142066799966e-3 + (0.89156148280219880024e-6 + (0.62480008150788597147e-8 + (0.34079760983458878910e-10 + 0.13917107176888888889e-12 * t) * t) * t) * t) * t) * t; } case 81: { double t = 2 * y100 - 163; return 0.45409763548534330981e0 + (0.91463027755548240654e-2 + (0.10553137232446167258e-3 + (0.94293113464638623798e-6 + (0.65972492312219959885e-8 + (0.35782041795476563662e-10 + 0.14455745872000000000e-12 * t) * t) * t) * t) * t) * t; } case 82: { double t = 2 * y100 - 165; return 0.47282001668512331468e0 + (0.95799574408860463394e-2 + (0.11135019058000067469e-3 + (0.99716373005509038080e-6 + (0.69638453369956970347e-8 + (0.37549499088161345850e-10 + 0.15003280712888888889e-12 * t) * t) * t) * t) * t) * t; } case 83: { double t = 2 * y100 - 167; return 0.49243342227179841649e0 + (0.10037550043909497071e-1 + (0.11750334542845234952e-3 + (0.10544006716188967172e-5 + (0.73484461168242224872e-8 + (0.39383162326435752965e-10 + 0.15559069118222222222e-12 * t) * t) * t) * t) * t) * t; } case 84: { double t = 2 * y100 - 169; return 0.51298708979209258326e0 + (0.10520454564612427224e-1 + (0.12400930037494996655e-3 + (0.11147886579371265246e-5 + (0.77517184550568711454e-8 + (0.41283980931872622611e-10 + 0.16122419680000000000e-12 * t) * t) * t) * t) * t) * t; } case 85: { double t = 2 * y100 - 171; return 0.53453307979101369843e0 + (0.11030120618800726938e-1 + (0.13088741519572269581e-3 + (0.11784797595374515432e-5 + (0.81743383063044825400e-8 + (0.43252818449517081051e-10 + 0.16692592640000000000e-12 * t) * t) * t) * t) * t) * t; } case 86: { double t = 2 * y100 - 173; return 0.55712643071169299478e0 + (0.11568077107929735233e-1 + (0.13815797838036651289e-3 + (0.12456314879260904558e-5 + (0.86169898078969313597e-8 + (0.45290446811539652525e-10 + 0.17268801084444444444e-12 * t) * t) * t) * t) * t) * t; } case 87: { double t = 2 * y100 - 175; return 0.58082532122519320968e0 + (0.12135935999503877077e-1 + (0.14584223996665838559e-3 + (0.13164068573095710742e-5 + (0.90803643355106020163e-8 + (0.47397540713124619155e-10 + 0.17850211608888888889e-12 * t) * t) * t) * t) * t) * t; } case 88: { double t = 2 * y100 - 177; return 0.60569124025293375554e0 + (0.12735396239525550361e-1 + (0.15396244472258863344e-3 + (0.13909744385382818253e-5 + (0.95651595032306228245e-8 + (0.49574672127669041550e-10 + 0.18435945564444444444e-12 * t) * t) * t) * t) * t) * t; } case 89: { double t = 2 * y100 - 179; return 0.63178916494715716894e0 + (0.13368247798287030927e-1 + (0.16254186562762076141e-3 + (0.14695084048334056083e-5 + (0.10072078109604152350e-7 + (0.51822304995680707483e-10 + 0.19025081422222222222e-12 * t) * t) * t) * t) * t) * t; } case 90: { double t = 2 * y100 - 181; return 0.65918774689725319200e0 + (0.14036375850601992063e-1 + (0.17160483760259706354e-3 + (0.15521885688723188371e-5 + (0.10601827031535280590e-7 + (0.54140790105837520499e-10 + 0.19616655146666666667e-12 * t) * t) * t) * t) * t) * t; } case 91: { double t = 2 * y100 - 183; return 0.68795950683174433822e0 + (0.14741765091365869084e-1 + (0.18117679143520433835e-3 + (0.16392004108230585213e-5 + (0.11155116068018043001e-7 + (0.56530360194925690374e-10 + 0.20209663662222222222e-12 * t) * t) * t) * t) * t) * t; } case 92: { double t = 2 * y100 - 185; return 0.71818103808729967036e0 + (0.15486504187117112279e-1 + (0.19128428784550923217e-3 + (0.17307350969359975848e-5 + (0.11732656736113607751e-7 + (0.58991125287563833603e-10 + 0.20803065333333333333e-12 * t) * t) * t) * t) * t) * t; } case 93: { double t = 2 * y100 - 187; return 0.74993321911726254661e0 + (0.16272790364044783382e-1 + (0.20195505163377912645e-3 + (0.18269894883203346953e-5 + (0.12335161021630225535e-7 + (0.61523068312169087227e-10 + 0.21395783431111111111e-12 * t) * t) * t) * t) * t) * t; } case 94: { double t = 2 * y100 - 189; return 0.78330143531283492729e0 + (0.17102934132652429240e-1 + (0.21321800585063327041e-3 + (0.19281661395543913713e-5 + (0.12963340087354341574e-7 + (0.64126040998066348872e-10 + 0.21986708942222222222e-12 * t) * t) * t) * t) * t) * t; } case 95: { double t = 2 * y100 - 191; return 0.81837581041023811832e0 + (0.17979364149044223802e-1 + (0.22510330592753129006e-3 + (0.20344732868018175389e-5 + (0.13617902941839949718e-7 + (0.66799760083972474642e-10 + 0.22574701262222222222e-12 * t) * t) * t) * t) * t) * t; } case 96: { double t = 2 * y100 - 193; return 0.85525144775685126237e0 + (0.18904632212547561026e-1 + (0.23764237370371255638e-3 + (0.21461248251306387979e-5 + (0.14299555071870523786e-7 + (0.69543803864694171934e-10 + 0.23158593688888888889e-12 * t) * t) * t) * t) * t) * t; } case 97: { double t = 2 * y100 - 195; return 0.89402868170849933734e0 + (0.19881418399127202569e-1 + (0.25086793128395995798e-3 + (0.22633402747585233180e-5 + (0.15008997042116532283e-7 + (0.72357609075043941261e-10 + 0.23737194737777777778e-12 * t) * t) * t) * t) * t) * t; } case 98: { double t = 2 * y100 - 197; return 0.93481333942870796363e0 + (0.20912536329780368893e-1 + (0.26481403465998477969e-3 + (0.23863447359754921676e-5 + (0.15746923065472184451e-7 + (0.75240468141720143653e-10 + 0.24309291271111111111e-12 * t) * t) * t) * t) * t) * t; } case 99: { double t = 2 * y100 - 199; return 0.97771701335885035464e0 + (0.22000938572830479551e-1 + (0.27951610702682383001e-3 + (0.25153688325245314530e-5 + (0.16514019547822821453e-7 + (0.78191526829368231251e-10 + 0.24873652355555555556e-12 * t) * t) * t) * t) * t) * t; } } // we only get here if y = 1, i.e. |x| < 4*eps, in which case // erfcx is within 1e-15 of 1.. return 1.0; } /**- * Compute the imaginary part of the Faddeeva function for a real argument * <pre> * Compute a scaled Dawson integral * FADDEEVA(w_im)(x) = 2*Dawson(x)/sqrt(pi) * equivalent to the imaginary part w(x) for real x. * * Uses methods similar to the erfcx calculation above: continued fractions * for large |x|, a lookup table of Chebyshev polynomials for smaller |x|, * and finally a Taylor expansion for |x|<0.01. * * Steven G. Johnson, October 2012. * </pre> * @param x * @return Im[w(x)] */ public static double wImaginary(double x) { if (x >= 0) { if (x > 45) { // continued-fraction expansion is faster final double ispi = ONE_OVER_SQRT_PI; if (x > 5e7) // 1-term expansion, important to avoid overflow return ispi / x; /* * 5-term expansion (rely on compiler for CSE), simplified from: ispi / (x-0.5/(x-1/(x-1.5/(x-2/x)))) */ final double x2 = x * x; return ispi * ((x2) * (x2 - 4.5) + 2) / (x * ((x2) * (x2 - 5) + 3.75)); } return w_im_y100(100 / (1 + x), x); } // else { // = -FADDEEVA(w_im)(-x) if (x < -45) { // continued-fraction expansion is faster final double ispi = ONE_OVER_SQRT_PI; if (x < -5e7) // 1-term expansion, important to avoid overflow return ispi / x; /* * 5-term expansion (rely on compiler for CSE), simplified from: ispi / (x-0.5/(x-1/(x-1.5/(x-2/x)))) */ final double x2 = x * x; return ispi * ((x2) * (x2 - 4.5) + 2) / (x * ((x2) * (x2 - 5) + 3.75)); } return -w_im_y100(100 / (1 - x), -x); // } } /*- Given y100=100*y, where y = 1/(1+x) for x >= 0, compute w_im(x). Uses a look-up table of 100 different Chebyshev polynomials for y intervals [0,0.01], [0.01,0.02], ...., [0.99,1], generated with the help of Maple and a little shell script. This allows the Chebyshev polynomials to be of significantly lower degree (about 1/30) compared to fitting the whole [0,1] interval with a single polynomial. */ private static double w_im_y100(double y100, double x) { switch ((int) y100) { case 0: { double t = 2 * y100 - 1; return 0.28351593328822191546e-2 + (0.28494783221378400759e-2 + (0.14427470563276734183e-4 + (0.10939723080231588129e-6 + (0.92474307943275042045e-9 + (0.89128907666450075245e-11 + 0.92974121935111111110e-13 * t) * t) * t) * t) * t) * t; } case 1: { double t = 2 * y100 - 3; return 0.85927161243940350562e-2 + (0.29085312941641339862e-2 + (0.15106783707725582090e-4 + (0.11716709978531327367e-6 + (0.10197387816021040024e-8 + (0.10122678863073360769e-10 + 0.10917479678400000000e-12 * t) * t) * t) * t) * t) * t; } case 2: { double t = 2 * y100 - 5; return 0.14471159831187703054e-1 + (0.29703978970263836210e-2 + (0.15835096760173030976e-4 + (0.12574803383199211596e-6 + (0.11278672159518415848e-8 + (0.11547462300333495797e-10 + 0.12894535335111111111e-12 * t) * t) * t) * t) * t) * t; } case 3: { double t = 2 * y100 - 7; return 0.20476320420324610618e-1 + (0.30352843012898665856e-2 + (0.16617609387003727409e-4 + (0.13525429711163116103e-6 + (0.12515095552507169013e-8 + (0.13235687543603382345e-10 + 0.15326595042666666667e-12 * t) * t) * t) * t) * t) * t; } case 4: { double t = 2 * y100 - 9; return 0.26614461952489004566e-1 + (0.31034189276234947088e-2 + (0.17460268109986214274e-4 + (0.14582130824485709573e-6 + (0.13935959083809746345e-8 + (0.15249438072998932900e-10 + 0.18344741882133333333e-12 * t) * t) * t) * t) * t) * t; } case 5: { double t = 2 * y100 - 11; return 0.32892330248093586215e-1 + (0.31750557067975068584e-2 + (0.18369907582308672632e-4 + (0.15761063702089457882e-6 + (0.15577638230480894382e-8 + (0.17663868462699097951e-10 + (0.22126732680711111111e-12 + 0.30273474177737853668e-14 * t) * t) * t) * t) * t) * t) * t; } case 6: { double t = 2 * y100 - 13; return 0.39317207681134336024e-1 + (0.32504779701937539333e-2 + (0.19354426046513400534e-4 + (0.17081646971321290539e-6 + (0.17485733959327106250e-8 + (0.20593687304921961410e-10 + (0.26917401949155555556e-12 + 0.38562123837725712270e-14 * t) * t) * t) * t) * t) * t) * t; } case 7: { double t = 2 * y100 - 15; return 0.45896976511367738235e-1 + (0.33300031273110976165e-2 + (0.20423005398039037313e-4 + (0.18567412470376467303e-6 + (0.19718038363586588213e-8 + (0.24175006536781219807e-10 + (0.33059982791466666666e-12 + 0.49756574284439426165e-14 * t) * t) * t) * t) * t) * t) * t; } case 8: { double t = 2 * y100 - 17; return 0.52640192524848962855e-1 + (0.34139883358846720806e-2 + (0.21586390240603337337e-4 + (0.20247136501568904646e-6 + (0.22348696948197102935e-8 + (0.28597516301950162548e-10 + (0.41045502119111111110e-12 + 0.65151614515238361946e-14 * t) * t) * t) * t) * t) * t) * t; } case 9: { double t = 2 * y100 - 19; return 0.59556171228656770456e-1 + (0.35028374386648914444e-2 + (0.22857246150998562824e-4 + (0.22156372146525190679e-6 + (0.25474171590893813583e-8 + (0.34122390890697400584e-10 + (0.51593189879111111110e-12 + 0.86775076853908006938e-14 * t) * t) * t) * t) * t) * t) * t; } case 10: { double t = 2 * y100 - 21; return 0.66655089485108212551e-1 + (0.35970095381271285568e-2 + (0.24250626164318672928e-4 + (0.24339561521785040536e-6 + (0.29221990406518411415e-8 + (0.41117013527967776467e-10 + (0.65786450716444444445e-12 + 0.11791885745450623331e-13 * t) * t) * t) * t) * t) * t) * t; } case 11: { double t = 2 * y100 - 23; return 0.73948106345519174661e-1 + (0.36970297216569341748e-2 + (0.25784588137312868792e-4 + (0.26853012002366752770e-6 + (0.33763958861206729592e-8 + (0.50111549981376976397e-10 + (0.85313857496888888890e-12 + 0.16417079927706899860e-13 * t) * t) * t) * t) * t) * t) * t; } case 12: { double t = 2 * y100 - 25; return 0.81447508065002963203e-1 + (0.38035026606492705117e-2 + (0.27481027572231851896e-4 + (0.29769200731832331364e-6 + (0.39336816287457655076e-8 + (0.61895471132038157624e-10 + (0.11292303213511111111e-11 + 0.23558532213703884304e-13 * t) * t) * t) * t) * t) * t) * t; } case 13: { double t = 2 * y100 - 27; return 0.89166884027582716628e-1 + (0.39171301322438946014e-2 + (0.29366827260422311668e-4 + (0.33183204390350724895e-6 + (0.46276006281647330524e-8 + (0.77692631378169813324e-10 + (0.15335153258844444444e-11 + 0.35183103415916026911e-13 * t) * t) * t) * t) * t) * t) * t; } case 14: { double t = 2 * y100 - 29; return 0.97121342888032322019e-1 + (0.40387340353207909514e-2 + (0.31475490395950776930e-4 + (0.37222714227125135042e-6 + (0.55074373178613809996e-8 + (0.99509175283990337944e-10 + (0.21552645758222222222e-11 + 0.55728651431872687605e-13 * t) * t) * t) * t) * t) * t) * t; } case 15: { double t = 2 * y100 - 31; return 0.10532778218603311137e0 + (0.41692873614065380607e-2 + (0.33849549774889456984e-4 + (0.42064596193692630143e-6 + (0.66494579697622432987e-8 + (0.13094103581931802337e-9 + (0.31896187409777777778e-11 + 0.97271974184476560742e-13 * t) * t) * t) * t) * t) * t) * t; } case 16: { double t = 2 * y100 - 33; return 0.11380523107427108222e0 + (0.43099572287871821013e-2 + (0.36544324341565929930e-4 + (0.47965044028581857764e-6 + (0.81819034238463698796e-8 + (0.17934133239549647357e-9 + (0.50956666166186293627e-11 + (0.18850487318190638010e-12 + 0.79697813173519853340e-14 * t) * t) * t) * t) * t) * t) * t) * t; } case 17: { double t = 2 * y100 - 35; return 0.12257529703447467345e0 + (0.44621675710026986366e-2 + (0.39634304721292440285e-4 + (0.55321553769873381819e-6 + (0.10343619428848520870e-7 + (0.26033830170470368088e-9 + (0.87743837749108025357e-11 + (0.34427092430230063401e-12 + 0.10205506615709843189e-13 * t) * t) * t) * t) * t) * t) * t) * t; } case 18: { double t = 2 * y100 - 37; return 0.13166276955656699478e0 + (0.46276970481783001803e-2 + (0.43225026380496399310e-4 + (0.64799164020016902656e-6 + (0.13580082794704641782e-7 + (0.39839800853954313927e-9 + (0.14431142411840000000e-10 + 0.42193457308830027541e-12 * t) * t) * t) * t) * t) * t) * t; } case 19: { double t = 2 * y100 - 39; return 0.14109647869803356475e0 + (0.48088424418545347758e-2 + (0.47474504753352150205e-4 + (0.77509866468724360352e-6 + (0.18536851570794291724e-7 + (0.60146623257887570439e-9 + (0.18533978397305276318e-10 + (0.41033845938901048380e-13 - 0.46160680279304825485e-13 * t) * t) * t) * t) * t) * t) * t) * t; } case 20: { double t = 2 * y100 - 41; return 0.15091057940548936603e0 + (0.50086864672004685703e-2 + (0.52622482832192230762e-4 + (0.95034664722040355212e-6 + (0.25614261331144718769e-7 + (0.80183196716888606252e-9 + (0.12282524750534352272e-10 + (-0.10531774117332273617e-11 - 0.86157181395039646412e-13 * t) * t) * t) * t) * t) * t) * t) * t; } case 21: { double t = 2 * y100 - 43; return 0.16114648116017010770e0 + (0.52314661581655369795e-2 + (0.59005534545908331315e-4 + (0.11885518333915387760e-5 + (0.33975801443239949256e-7 + (0.82111547144080388610e-9 + (-0.12357674017312854138e-10 + (-0.24355112256914479176e-11 - 0.75155506863572930844e-13 * t) * t) * t) * t) * t) * t) * t) * t; } case 22: { double t = 2 * y100 - 45; return 0.17185551279680451144e0 + (0.54829002967599420860e-2 + (0.67013226658738082118e-4 + (0.14897400671425088807e-5 + (0.40690283917126153701e-7 + (0.44060872913473778318e-9 + (-0.52641873433280000000e-10 - 0.30940587864543343124e-11 * t) * t) * t) * t) * t) * t) * t; } case 23: { double t = 2 * y100 - 47; return 0.18310194559815257381e0 + (0.57701559375966953174e-2 + (0.76948789401735193483e-4 + (0.18227569842290822512e-5 + (0.41092208344387212276e-7 + (-0.44009499965694442143e-9 + (-0.92195414685628803451e-10 + (-0.22657389705721753299e-11 + 0.10004784908106839254e-12 * t) * t) * t) * t) * t) * t) * t) * t; } case 24: { double t = 2 * y100 - 49; return 0.19496527191546630345e0 + (0.61010853144364724856e-2 + (0.88812881056342004864e-4 + (0.21180686746360261031e-5 + (0.30652145555130049203e-7 + (-0.16841328574105890409e-8 + (-0.11008129460612823934e-9 + (-0.12180794204544515779e-12 + 0.15703325634590334097e-12 * t) * t) * t) * t) * t) * t) * t) * t; } case 25: { double t = 2 * y100 - 51; return 0.20754006813966575720e0 + (0.64825787724922073908e-2 + (0.10209599627522311893e-3 + (0.22785233392557600468e-5 + (0.73495224449907568402e-8 + (-0.29442705974150112783e-8 + (-0.94082603434315016546e-10 + (0.23609990400179321267e-11 + 0.14141908654269023788e-12 * t) * t) * t) * t) * t) * t) * t) * t; } case 26: { double t = 2 * y100 - 53; return 0.22093185554845172146e0 + (0.69182878150187964499e-2 + (0.11568723331156335712e-3 + (0.22060577946323627739e-5 + (-0.26929730679360840096e-7 + (-0.38176506152362058013e-8 + (-0.47399503861054459243e-10 + (0.40953700187172127264e-11 + 0.69157730376118511127e-13 * t) * t) * t) * t) * t) * t) * t) * t; } case 27: { double t = 2 * y100 - 55; return 0.23524827304057813918e0 + (0.74063350762008734520e-2 + (0.12796333874615790348e-3 + (0.18327267316171054273e-5 + (-0.66742910737957100098e-7 + (-0.40204740975496797870e-8 + (0.14515984139495745330e-10 + (0.44921608954536047975e-11 - 0.18583341338983776219e-13 * t) * t) * t) * t) * t) * t) * t) * t; } case 28: { double t = 2 * y100 - 57; return 0.25058626331812744775e0 + (0.79377285151602061328e-2 + (0.13704268650417478346e-3 + (0.11427511739544695861e-5 + (-0.10485442447768377485e-6 + (-0.34850364756499369763e-8 + (0.72656453829502179208e-10 + (0.36195460197779299406e-11 - 0.84882136022200714710e-13 * t) * t) * t) * t) * t) * t) * t) * t; } case 29: { double t = 2 * y100 - 59; return 0.26701724900280689785e0 + (0.84959936119625864274e-2 + (0.14112359443938883232e-3 + (0.17800427288596909634e-6 + (-0.13443492107643109071e-6 + (-0.23512456315677680293e-8 + (0.11245846264695936769e-9 + (0.19850501334649565404e-11 - 0.11284666134635050832e-12 * t) * t) * t) * t) * t) * t) * t) * t; } case 30: { double t = 2 * y100 - 61; return 0.28457293586253654144e0 + (0.90581563892650431899e-2 + (0.13880520331140646738e-3 + (-0.97262302362522896157e-6 + (-0.15077100040254187366e-6 + (-0.88574317464577116689e-9 + (0.12760311125637474581e-9 + (0.20155151018282695055e-12 - 0.10514169375181734921e-12 * t) * t) * t) * t) * t) * t) * t) * t; } case 31: { double t = 2 * y100 - 63; return 0.30323425595617385705e0 + (0.95968346790597422934e-2 + (0.12931067776725883939e-3 + (-0.21938741702795543986e-5 + (-0.15202888584907373963e-6 + (0.61788350541116331411e-9 + (0.11957835742791248256e-9 + (-0.12598179834007710908e-11 - 0.75151817129574614194e-13 * t) * t) * t) * t) * t) * t) * t) * t; } case 32: { double t = 2 * y100 - 65; return 0.32292521181517384379e0 + (0.10082957727001199408e-1 + (0.11257589426154962226e-3 + (-0.33670890319327881129e-5 + (-0.13910529040004008158e-6 + (0.19170714373047512945e-8 + (0.94840222377720494290e-10 + (-0.21650018351795353201e-11 - 0.37875211678024922689e-13 * t) * t) * t) * t) * t) * t) * t) * t; } case 33: { double t = 2 * y100 - 67; return 0.34351233557911753862e0 + (0.10488575435572745309e-1 + (0.89209444197248726614e-4 + (-0.43893459576483345364e-5 + (-0.11488595830450424419e-6 + (0.28599494117122464806e-8 + (0.61537542799857777779e-10 - 0.24935749227658002212e-11 * t) * t) * t) * t) * t) * t) * t; } case 34: { double t = 2 * y100 - 69; return 0.36480946642143669093e0 + (0.10789304203431861366e-1 + (0.60357993745283076834e-4 + (-0.51855862174130669389e-5 + (-0.83291664087289801313e-7 + (0.33898011178582671546e-8 + (0.27082948188277716482e-10 + (-0.23603379397408694974e-11 + 0.19328087692252869842e-13 * t) * t) * t) * t) * t) * t) * t) * t; } case 35: { double t = 2 * y100 - 71; return 0.38658679935694939199e0 + (0.10966119158288804999e-1 + (0.27521612041849561426e-4 + (-0.57132774537670953638e-5 + (-0.48404772799207914899e-7 + (0.35268354132474570493e-8 + (-0.32383477652514618094e-11 + (-0.19334202915190442501e-11 + 0.32333189861286460270e-13 * t) * t) * t) * t) * t) * t) * t) * t; } case 36: { double t = 2 * y100 - 73; return 0.40858275583808707870e0 + (0.11006378016848466550e-1 + (-0.76396376685213286033e-5 + (-0.59609835484245791439e-5 + (-0.13834610033859313213e-7 + (0.33406952974861448790e-8 + (-0.26474915974296612559e-10 + (-0.13750229270354351983e-11 + 0.36169366979417390637e-13 * t) * t) * t) * t) * t) * t) * t) * t; } case 37: { double t = 2 * y100 - 75; return 0.43051714914006682977e0 + (0.10904106549500816155e-1 + (-0.43477527256787216909e-4 + (-0.59429739547798343948e-5 + (0.17639200194091885949e-7 + (0.29235991689639918688e-8 + (-0.41718791216277812879e-10 + (-0.81023337739508049606e-12 + 0.33618915934461994428e-13 * t) * t) * t) * t) * t) * t) * t) * t; } case 38: { double t = 2 * y100 - 77; return 0.45210428135559607406e0 + (0.10659670756384400554e-1 + (-0.78488639913256978087e-4 + (-0.56919860886214735936e-5 + (0.44181850467477733407e-7 + (0.23694306174312688151e-8 + (-0.49492621596685443247e-10 + (-0.31827275712126287222e-12 + 0.27494438742721623654e-13 * t) * t) * t) * t) * t) * t) * t) * t; } case 39: { double t = 2 * y100 - 79; return 0.47306491195005224077e0 + (0.10279006119745977570e-1 + (-0.11140268171830478306e-3 + (-0.52518035247451432069e-5 + (0.64846898158889479518e-7 + (0.17603624837787337662e-8 + (-0.51129481592926104316e-10 + (0.62674584974141049511e-13 + 0.20055478560829935356e-13 * t) * t) * t) * t) * t) * t) * t) * t; } case 40: { double t = 2 * y100 - 81; return 0.49313638965719857647e0 + (0.97725799114772017662e-2 + (-0.14122854267291533334e-3 + (-0.46707252568834951907e-5 + (0.79421347979319449524e-7 + (0.11603027184324708643e-8 + (-0.48269605844397175946e-10 + (0.32477251431748571219e-12 + 0.12831052634143527985e-13 * t) * t) * t) * t) * t) * t) * t) * t; } case 41: { double t = 2 * y100 - 83; return 0.51208057433416004042e0 + (0.91542422354009224951e-2 + (-0.16726530230228647275e-3 + (-0.39964621752527649409e-5 + (0.88232252903213171454e-7 + (0.61343113364949928501e-9 + (-0.42516755603130443051e-10 + (0.47910437172240209262e-12 + 0.66784341874437478953e-14 * t) * t) * t) * t) * t) * t) * t) * t; } case 42: { double t = 2 * y100 - 85; return 0.52968945458607484524e0 + (0.84400880445116786088e-2 + (-0.18908729783854258774e-3 + (-0.32725905467782951931e-5 + (0.91956190588652090659e-7 + (0.14593989152420122909e-9 + (-0.35239490687644444445e-10 + 0.54613829888448694898e-12 * t) * t) * t) * t) * t) * t) * t; } case 43: { double t = 2 * y100 - 87; return 0.54578857454330070965e0 + (0.76474155195880295311e-2 + (-0.20651230590808213884e-3 + (-0.25364339140543131706e-5 + (0.91455367999510681979e-7 + (-0.23061359005297528898e-9 + (-0.27512928625244444444e-10 + 0.54895806008493285579e-12 * t) * t) * t) * t) * t) * t) * t; } case 44: { double t = 2 * y100 - 89; return 0.56023851910298493910e0 + (0.67938321739997196804e-2 + (-0.21956066613331411760e-3 + (-0.18181127670443266395e-5 + (0.87650335075416845987e-7 + (-0.51548062050366615977e-9 + (-0.20068462174044444444e-10 + 0.50912654909758187264e-12 * t) * t) * t) * t) * t) * t) * t; } case 45: { double t = 2 * y100 - 91; return 0.57293478057455721150e0 + (0.58965321010394044087e-2 + (-0.22841145229276575597e-3 + (-0.11404605562013443659e-5 + (0.81430290992322326296e-7 + (-0.71512447242755357629e-9 + (-0.13372664928000000000e-10 + 0.44461498336689298148e-12 * t) * t) * t) * t) * t) * t) * t; } case 46: { double t = 2 * y100 - 93; return 0.58380635448407827360e0 + (0.49717469530842831182e-2 + (-0.23336001540009645365e-3 + (-0.51952064448608850822e-6 + (0.73596577815411080511e-7 + (-0.84020916763091566035e-9 + (-0.76700972702222222221e-11 + 0.36914462807972467044e-12 * t) * t) * t) * t) * t) * t) * t; } case 47: { double t = 2 * y100 - 95; return 0.59281340237769489597e0 + (0.40343592069379730568e-2 + (-0.23477963738658326185e-3 + (0.34615944987790224234e-7 + (0.64832803248395814574e-7 + (-0.90329163587627007971e-9 + (-0.30421940400000000000e-11 + 0.29237386653743536669e-12 * t) * t) * t) * t) * t) * t) * t; } case 48: { double t = 2 * y100 - 97; return 0.59994428743114271918e0 + (0.30976579788271744329e-2 + (-0.23308875765700082835e-3 + (0.51681681023846925160e-6 + (0.55694594264948268169e-7 + (-0.91719117313243464652e-9 + (0.53982743680000000000e-12 + 0.22050829296187771142e-12 * t) * t) * t) * t) * t) * t) * t; } case 49: { double t = 2 * y100 - 99; return 0.60521224471819875444e0 + (0.21732138012345456060e-2 + (-0.22872428969625997456e-3 + (0.92588959922653404233e-6 + (0.46612665806531930684e-7 + (-0.89393722514414153351e-9 + (0.31718550353777777778e-11 + 0.15705458816080549117e-12 * t) * t) * t) * t) * t) * t) * t; } case 50: { double t = 2 * y100 - 101; return 0.60865189969791123620e0 + (0.12708480848877451719e-2 + (-0.22212090111534847166e-3 + (0.12636236031532793467e-5 + (0.37904037100232937574e-7 + (-0.84417089968101223519e-9 + (0.49843180828444444445e-11 + 0.10355439441049048273e-12 * t) * t) * t) * t) * t) * t) * t; } case 51: { double t = 2 * y100 - 103; return 0.61031580103499200191e0 + (0.39867436055861038223e-3 + (-0.21369573439579869291e-3 + (0.15339402129026183670e-5 + (0.29787479206646594442e-7 + (-0.77687792914228632974e-9 + (0.61192452741333333334e-11 + 0.60216691829459295780e-13 * t) * t) * t) * t) * t) * t) * t; } case 52: { double t = 2 * y100 - 105; return 0.61027109047879835868e0 + (-0.43680904508059878254e-3 + (-0.20383783788303894442e-3 + (0.17421743090883439959e-5 + (0.22400425572175715576e-7 + (-0.69934719320045128997e-9 + (0.67152759655111111110e-11 + 0.26419960042578359995e-13 * t) * t) * t) * t) * t) * t) * t; } case 53: { double t = 2 * y100 - 107; return 0.60859639489217430521e0 + (-0.12305921390962936873e-2 + (-0.19290150253894682629e-3 + (0.18944904654478310128e-5 + (0.15815530398618149110e-7 + (-0.61726850580964876070e-9 + 0.68987888999111111110e-11 * t) * t) * t) * t) * t) * t; } case 54: { double t = 2 * y100 - 109; return 0.60537899426486075181e0 + (-0.19790062241395705751e-2 + (-0.18120271393047062253e-3 + (0.19974264162313241405e-5 + (0.10055795094298172492e-7 + (-0.53491997919318263593e-9 + (0.67794550295111111110e-11 - 0.17059208095741511603e-13 * t) * t) * t) * t) * t) * t) * t; } case 55: { double t = 2 * y100 - 111; return 0.60071229457904110537e0 + (-0.26795676776166354354e-2 + (-0.16901799553627508781e-3 + (0.20575498324332621581e-5 + (0.51077165074461745053e-8 + (-0.45536079828057221858e-9 + (0.64488005516444444445e-11 - 0.29311677573152766338e-13 * t) * t) * t) * t) * t) * t) * t; } case 56: { double t = 2 * y100 - 113; return 0.59469361520112714738e0 + (-0.33308208190600993470e-2 + (-0.15658501295912405679e-3 + (0.20812116912895417272e-5 + (0.93227468760614182021e-9 + (-0.38066673740116080415e-9 + (0.59806790359111111110e-11 - 0.36887077278950440597e-13 * t) * t) * t) * t) * t) * t) * t; } case 57: { double t = 2 * y100 - 115; return 0.58742228631775388268e0 + (-0.39321858196059227251e-2 + (-0.14410441141450122535e-3 + (0.20743790018404020716e-5 + (-0.25261903811221913762e-8 + (-0.31212416519526924318e-9 + (0.54328422462222222221e-11 - 0.40864152484979815972e-13 * t) * t) * t) * t) * t) * t) * t; } case 58: { double t = 2 * y100 - 117; return 0.57899804200033018447e0 + (-0.44838157005618913447e-2 + (-0.13174245966501437965e-3 + (0.20425306888294362674e-5 + (-0.53330296023875447782e-8 + (-0.25041289435539821014e-9 + (0.48490437205333333334e-11 - 0.42162206939169045177e-13 * t) * t) * t) * t) * t) * t) * t; } case 59: { double t = 2 * y100 - 119; return 0.56951968796931245974e0 + (-0.49864649488074868952e-2 + (-0.11963416583477567125e-3 + (0.19906021780991036425e-5 + (-0.75580140299436494248e-8 + (-0.19576060961919820491e-9 + (0.42613011928888888890e-11 - 0.41539443304115604377e-13 * t) * t) * t) * t) * t) * t) * t; } case 60: { double t = 2 * y100 - 121; return 0.55908401930063918964e0 + (-0.54413711036826877753e-2 + (-0.10788661102511914628e-3 + (0.19229663322982839331e-5 + (-0.92714731195118129616e-8 + (-0.14807038677197394186e-9 + (0.36920870298666666666e-11 - 0.39603726688419162617e-13 * t) * t) * t) * t) * t) * t) * t; } case 61: { double t = 2 * y100 - 123; return 0.54778496152925675315e0 + (-0.58501497933213396670e-2 + (-0.96582314317855227421e-4 + (0.18434405235069270228e-5 + (-0.10541580254317078711e-7 + (-0.10702303407788943498e-9 + (0.31563175582222222222e-11 - 0.36829748079110481422e-13 * t) * t) * t) * t) * t) * t) * t; } case 62: { double t = 2 * y100 - 125; return 0.53571290831682823999e0 + (-0.62147030670760791791e-2 + (-0.85782497917111760790e-4 + (0.17553116363443470478e-5 + (-0.11432547349815541084e-7 + (-0.72157091369041330520e-10 + (0.26630811607111111111e-11 - 0.33578660425893164084e-13 * t) * t) * t) * t) * t) * t) * t; } case 63: { double t = 2 * y100 - 127; return 0.52295422962048434978e0 + (-0.65371404367776320720e-2 + (-0.75530164941473343780e-4 + (0.16613725797181276790e-5 + (-0.12003521296598910761e-7 + (-0.42929753689181106171e-10 + (0.22170894940444444444e-11 - 0.30117697501065110505e-13 * t) * t) * t) * t) * t) * t) * t; } case 64: { double t = 2 * y100 - 129; return 0.50959092577577886140e0 + (-0.68197117603118591766e-2 + (-0.65852936198953623307e-4 + (0.15639654113906716939e-5 + (-0.12308007991056524902e-7 + (-0.18761997536910939570e-10 + (0.18198628922666666667e-11 - 0.26638355362285200932e-13 * t) * t) * t) * t) * t) * t) * t; } case 65: { double t = 2 * y100 - 131; return 0.49570040481823167970e0 + (-0.70647509397614398066e-2 + (-0.56765617728962588218e-4 + (0.14650274449141448497e-5 + (-0.12393681471984051132e-7 + (0.92904351801168955424e-12 + (0.14706755960177777778e-11 - 0.23272455351266325318e-13 * t) * t) * t) * t) * t) * t) * t; } case 66: { double t = 2 * y100 - 133; return 0.48135536250935238066e0 + (-0.72746293327402359783e-2 + (-0.48272489495730030780e-4 + (0.13661377309113939689e-5 + (-0.12302464447599382189e-7 + (0.16707760028737074907e-10 + (0.11672928324444444444e-11 - 0.20105801424709924499e-13 * t) * t) * t) * t) * t) * t) * t; } case 67: { double t = 2 * y100 - 135; return 0.46662374675511439448e0 + (-0.74517177649528487002e-2 + (-0.40369318744279128718e-4 + (0.12685621118898535407e-5 + (-0.12070791463315156250e-7 + (0.29105507892605823871e-10 + (0.90653314645333333334e-12 - 0.17189503312102982646e-13 * t) * t) * t) * t) * t) * t) * t; } case 68: { double t = 2 * y100 - 137; return 0.45156879030168268778e0 + (-0.75983560650033817497e-2 + (-0.33045110380705139759e-4 + (0.11732956732035040896e-5 + (-0.11729986947158201869e-7 + (0.38611905704166441308e-10 + (0.68468768305777777779e-12 - 0.14549134330396754575e-13 * t) * t) * t) * t) * t) * t) * t; } case 69: { double t = 2 * y100 - 139; return 0.43624909769330896904e0 + (-0.77168291040309554679e-2 + (-0.26283612321339907756e-4 + (0.10811018836893550820e-5 + (-0.11306707563739851552e-7 + (0.45670446788529607380e-10 + (0.49782492549333333334e-12 - 0.12191983967561779442e-13 * t) * t) * t) * t) * t) * t) * t; } case 70: { double t = 2 * y100 - 141; return 0.42071877443548481181e0 + (-0.78093484015052730097e-2 + (-0.20064596897224934705e-4 + (0.99254806680671890766e-6 + (-0.10823412088884741451e-7 + (0.50677203326904716247e-10 + (0.34200547594666666666e-12 - 0.10112698698356194618e-13 * t) * t) * t) * t) * t) * t) * t; } case 71: { double t = 2 * y100 - 143; return 0.40502758809710844280e0 + (-0.78780384460872937555e-2 + (-0.14364940764532853112e-4 + (0.90803709228265217384e-6 + (-0.10298832847014466907e-7 + (0.53981671221969478551e-10 + (0.21342751381333333333e-12 - 0.82975901848387729274e-14 * t) * t) * t) * t) * t) * t) * t; } case 72: { double t = 2 * y100 - 145; return 0.38922115269731446690e0 + (-0.79249269708242064120e-2 + (-0.91595258799106970453e-5 + (0.82783535102217576495e-6 + (-0.97484311059617744437e-8 + (0.55889029041660225629e-10 + (0.10851981336888888889e-12 - 0.67278553237853459757e-14 * t) * t) * t) * t) * t) * t) * t; } case 73: { double t = 2 * y100 - 147; return 0.37334112915460307335e0 + (-0.79519385109223148791e-2 + (-0.44219833548840469752e-5 + (0.75209719038240314732e-6 + (-0.91848251458553190451e-8 + (0.56663266668051433844e-10 + (0.23995894257777777778e-13 - 0.53819475285389344313e-14 * t) * t) * t) * t) * t) * t) * t; } case 74: { double t = 2 * y100 - 149; return 0.35742543583374223085e0 + (-0.79608906571527956177e-2 + (-0.12530071050975781198e-6 + (0.68088605744900552505e-6 + (-0.86181844090844164075e-8 + (0.56530784203816176153e-10 + (-0.43120012248888888890e-13 - 0.42372603392496813810e-14 * t) * t) * t) * t) * t) * t) * t; } case 75: { double t = 2 * y100 - 151; return 0.34150846431979618536e0 + (-0.79534924968773806029e-2 + (0.37576885610891515813e-5 + (0.61419263633090524326e-6 + (-0.80565865409945960125e-8 + (0.55684175248749269411e-10 + (-0.95486860764444444445e-13 - 0.32712946432984510595e-14 * t) * t) * t) * t) * t) * t) * t; } case 76: { double t = 2 * y100 - 153; return 0.32562129649136346824e0 + (-0.79313448067948884309e-2 + (0.72539159933545300034e-5 + (0.55195028297415503083e-6 + (-0.75063365335570475258e-8 + (0.54281686749699595941e-10 - 0.13545424295111111111e-12 * t) * t) * t) * t) * t) * t; } case 77: { double t = 2 * y100 - 155; return 0.30979191977078391864e0 + (-0.78959416264207333695e-2 + (0.10389774377677210794e-4 + (0.49404804463196316464e-6 + (-0.69722488229411164685e-8 + (0.52469254655951393842e-10 - 0.16507860650666666667e-12 * t) * t) * t) * t) * t) * t; } case 78: { double t = 2 * y100 - 157; return 0.29404543811214459904e0 + (-0.78486728990364155356e-2 + (0.13190885683106990459e-4 + (0.44034158861387909694e-6 + (-0.64578942561562616481e-8 + (0.50354306498006928984e-10 - 0.18614473550222222222e-12 * t) * t) * t) * t) * t) * t; } case 79: { double t = 2 * y100 - 159; return 0.27840427686253660515e0 + (-0.77908279176252742013e-2 + (0.15681928798708548349e-4 + (0.39066226205099807573e-6 + (-0.59658144820660420814e-8 + (0.48030086420373141763e-10 - 0.20018995173333333333e-12 * t) * t) * t) * t) * t) * t; } case 80: { double t = 2 * y100 - 161; return 0.26288838011163800908e0 + (-0.77235993576119469018e-2 + (0.17886516796198660969e-4 + (0.34482457073472497720e-6 + (-0.54977066551955420066e-8 + (0.45572749379147269213e-10 - 0.20852924954666666667e-12 * t) * t) * t) * t) * t) * t; } case 81: { double t = 2 * y100 - 163; return 0.24751539954181029717e0 + (-0.76480877165290370975e-2 + (0.19827114835033977049e-4 + (0.30263228619976332110e-6 + (-0.50545814570120129947e-8 + (0.43043879374212005966e-10 - 0.21228012028444444444e-12 * t) * t) * t) * t) * t) * t; } case 82: { double t = 2 * y100 - 165; return 0.23230087411688914593e0 + (-0.75653060136384041587e-2 + (0.21524991113020016415e-4 + (0.26388338542539382413e-6 + (-0.46368974069671446622e-8 + (0.40492715758206515307e-10 - 0.21238627815111111111e-12 * t) * t) * t) * t) * t) * t; } case 83: { double t = 2 * y100 - 167; return 0.21725840021297341931e0 + (-0.74761846305979730439e-2 + (0.23000194404129495243e-4 + (0.22837400135642906796e-6 + (-0.42446743058417541277e-8 + (0.37958104071765923728e-10 - 0.20963978568888888889e-12 * t) * t) * t) * t) * t) * t; } case 84: { double t = 2 * y100 - 169; return 0.20239979200788191491e0 + (-0.73815761980493466516e-2 + (0.24271552727631854013e-4 + (0.19590154043390012843e-6 + (-0.38775884642456551753e-8 + (0.35470192372162901168e-10 - 0.20470131678222222222e-12 * t) * t) * t) * t) * t) * t; } case 85: { double t = 2 * y100 - 171; return 0.18773523211558098962e0 + (-0.72822604530339834448e-2 + (0.25356688567841293697e-4 + (0.16626710297744290016e-6 + (-0.35350521468015310830e-8 + (0.33051896213898864306e-10 - 0.19811844544000000000e-12 * t) * t) * t) * t) * t) * t; } case 86: { double t = 2 * y100 - 173; return 0.17327341258479649442e0 + (-0.71789490089142761950e-2 + (0.26272046822383820476e-4 + (0.13927732375657362345e-6 + (-0.32162794266956859603e-8 + (0.30720156036105652035e-10 - 0.19034196304000000000e-12 * t) * t) * t) * t) * t) * t; } case 87: { double t = 2 * y100 - 175; return 0.15902166648328672043e0 + (-0.70722899934245504034e-2 + (0.27032932310132226025e-4 + (0.11474573347816568279e-6 + (-0.29203404091754665063e-8 + (0.28487010262547971859e-10 - 0.18174029063111111111e-12 * t) * t) * t) * t) * t) * t; } case 88: { double t = 2 * y100 - 177; return 0.14498609036610283865e0 + (-0.69628725220045029273e-2 + (0.27653554229160596221e-4 + (0.92493727167393036470e-7 + (-0.26462055548683583849e-8 + (0.26360506250989943739e-10 - 0.17261211260444444444e-12 * t) * t) * t) * t) * t) * t; } case 89: { double t = 2 * y100 - 179; return 0.13117165798208050667e0 + (-0.68512309830281084723e-2 + (0.28147075431133863774e-4 + (0.72351212437979583441e-7 + (-0.23927816200314358570e-8 + (0.24345469651209833155e-10 - 0.16319736960000000000e-12 * t) * t) * t) * t) * t) * t; } case 90: { double t = 2 * y100 - 181; return 0.11758232561160626306e0 + (-0.67378491192463392927e-2 + (0.28525664781722907847e-4 + (0.54156999310046790024e-7 + (-0.21589405340123827823e-8 + (0.22444150951727334619e-10 - 0.15368675584000000000e-12 * t) * t) * t) * t) * t) * t; } case 91: { double t = 2 * y100 - 183; return 0.10422112945361673560e0 + (-0.66231638959845581564e-2 + (0.28800551216363918088e-4 + (0.37758983397952149613e-7 + (-0.19435423557038933431e-8 + (0.20656766125421362458e-10 - 0.14422990012444444444e-12 * t) * t) * t) * t) * t) * t; } case 92: { double t = 2 * y100 - 185; return 0.91090275493541084785e-1 + (-0.65075691516115160062e-2 + (0.28982078385527224867e-4 + (0.23014165807643012781e-7 + (-0.17454532910249875958e-8 + (0.18981946442680092373e-10 - 0.13494234691555555556e-12 * t) * t) * t) * t) * t) * t; } case 93: { double t = 2 * y100 - 187; return 0.78191222288771379358e-1 + (-0.63914190297303976434e-2 + (0.29079759021299682675e-4 + (0.97885458059415717014e-8 + (-0.15635596116134296819e-8 + (0.17417110744051331974e-10 - 0.12591151763555555556e-12 * t) * t) * t) * t) * t) * t; } case 94: { double t = 2 * y100 - 189; return 0.65524757106147402224e-1 + (-0.62750311956082444159e-2 + (0.29102328354323449795e-4 + (-0.20430838882727954582e-8 + (-0.13967781903855367270e-8 + (0.15958771833747057569e-10 - 0.11720175765333333333e-12 * t) * t) * t) * t) * t) * t; } case 95: { double t = 2 * y100 - 191; return 0.53091065838453612773e-1 + (-0.61586898417077043662e-2 + (0.29057796072960100710e-4 + (-0.12597414620517987536e-7 + (-0.12440642607426861943e-8 + (0.14602787128447932137e-10 - 0.10885859114666666667e-12 * t) * t) * t) * t) * t) * t; } case 96: { double t = 2 * y100 - 193; return 0.40889797115352738582e-1 + (-0.60426484889413678200e-2 + (0.28953496450191694606e-4 + (-0.21982952021823718400e-7 + (-0.11044169117553026211e-8 + (0.13344562332430552171e-10 - 0.10091231402844444444e-12 * t) * t) * t) * t) * t) * t; } case 97: case 98: case 99: case 100: { // use Taylor expansion for small x (|x| <= 0.0309...) // (2/sqrt(pi)) * (x - 2/3 x^3 + 4/15 x^5 - 8/105 x^7 + 16/945 x^9) final double x2 = x * x; return x * (TAYLOR_COEFFS[0] - x2 * (0.75225277806367504925 - x2 * (0.30090111122547001970 - x2 * (0.085971746064420005629 - x2 * 0.016931216931216931217)))); } } /* * Since 0 <= y100 < 101, this is only reached if x is NaN, in which case we should return NaN. */ return NaN; } }