/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math.optimization.fitting; import java.io.Serializable; import org.apache.commons.math.exception.DimensionMismatchException; import org.apache.commons.math.exception.util.LocalizedFormats; import org.apache.commons.math.exception.ZeroException; import org.apache.commons.math.exception.NullArgumentException; import org.apache.commons.math.optimization.fitting.ParametricRealFunction; /** * A Gaussian function. Specifically: * <p> * <tt>f(x) = a + b*exp(-((x - c)^2 / (2*d^2)))</tt> * <p> * The parameters have the following meaning: * <ul> * <li><tt>a</tt> is a constant offset that shifts <tt>f(x)</tt> up or down * <li><tt>b</tt> is the height of the peak * <li><tt>c</tt> is the position of the center of the peak * <li><tt>d</tt> is related to the FWHM by <tt>FWHM = 2*sqrt(2*ln(2))*d</tt> * </ul> * Notation key: * <ul> * <li><tt>x^n</tt>: <tt>x</tt> raised to the power of <tt>n</tt> * <li><tt>exp(x)</tt>: <i>e</i><tt>^x</tt> * <li><tt>sqrt(x)</tt>: the square root of <tt>x</tt> * <li><tt>ln(x)</tt>: the natural logarithm of <tt>x</tt> * </ul> * References: * <ul> * <li><a href="http://en.wikipedia.org/wiki/Gaussian_function">Wikipedia: * Gaussian function</a> * </ul> * * @since 2.2 * @version $Revision: 1037327 $ $Date: 2010-11-20 21:57:37 +0100 (sam. 20 nov. 2010) $ */ public class ParametricGaussianFunction implements ParametricRealFunction, Serializable { /** Serializable version Id. */ private static final long serialVersionUID = -3875578602503903233L; /** * Constructs an instance. */ public ParametricGaussianFunction() { } /** * Computes value of function <tt>f(x)</tt> for the specified <tt>x</tt> and * parameters <tt>a</tt>, <tt>b</tt>, <tt>c</tt>, and <tt>d</tt>. * * @param x <tt>x</tt> value * @param parameters values of <tt>a</tt>, <tt>b</tt>, <tt>c</tt>, and * <tt>d</tt> * * @return value of <tt>f(x)</tt> evaluated at <tt>x</tt> with the specified * parameters * * @throws IllegalArgumentException if <code>parameters</code> is invalid as * determined by {@link #validateParameters(double[])} * @throws ZeroException if <code>parameters</code> values are * invalid as determined by {@link #validateParameters(double[])} */ public double value(double x, double[] parameters) throws ZeroException { validateParameters(parameters); final double a = parameters[0]; final double b = parameters[1]; final double c = parameters[2]; final double d = parameters[3]; final double xMc = x - c; return a + b * Math.exp(-xMc * xMc / (2.0 * (d * d))); } /** * Computes the gradient vector for a four variable version of the function * where the parameters, <tt>a</tt>, <tt>b</tt>, <tt>c</tt>, and <tt>d</tt>, * are considered the variables, not <tt>x</tt>. That is, instead of * computing the gradient vector for the function <tt>f(x)</tt> (which would * just be the derivative of <tt>f(x)</tt> with respect to <tt>x</tt> since * it's a one-dimensional function), computes the gradient vector for the * function <tt>f(a, b, c, d) = a + b*exp(-((x - c)^2 / (2*d^2)))</tt> * treating the specified <tt>x</tt> as a constant. * <p> * The components of the computed gradient vector are the partial * derivatives of <tt>f(a, b, c, d)</tt> with respect to each variable. * That is, the partial derivative of <tt>f(a, b, c, d)</tt> with respect to * <tt>a</tt>, the partial derivative of <tt>f(a, b, c, d)</tt> with respect * to <tt>b</tt>, the partial derivative of <tt>f(a, b, c, d)</tt> with * respect to <tt>c</tt>, and the partial derivative of <tt>f(a, b, c, * d)</tt> with respect to <tt>d</tt>. * * @param x <tt>x</tt> value to be used as constant in <tt>f(a, b, c, * d)</tt> * @param parameters values of <tt>a</tt>, <tt>b</tt>, <tt>c</tt>, and * <tt>d</tt> for computation of gradient vector of <tt>f(a, b, c, * d)</tt> * * @return gradient vector of <tt>f(a, b, c, d)</tt> * * @throws IllegalArgumentException if <code>parameters</code> is invalid as * determined by {@link #validateParameters(double[])} * @throws ZeroException if <code>parameters</code> values are * invalid as determined by {@link #validateParameters(double[])} */ public double[] gradient(double x, double[] parameters) throws ZeroException { validateParameters(parameters); final double b = parameters[1]; final double c = parameters[2]; final double d = parameters[3]; final double xMc = x - c; final double d2 = d * d; final double exp = Math.exp(-xMc * xMc / (2 * d2)); final double f = b * exp * xMc / d2; return new double[] { 1.0, exp, f, f * xMc / d }; } /** * Validates parameters to ensure they are appropriate for the evaluation of * the <code>value</code> and <code>gradient</code> methods. * * @param parameters values of <tt>a</tt>, <tt>b</tt>, <tt>c</tt>, and * <tt>d</tt> * * @throws IllegalArgumentException if <code>parameters</code> is * <code>null</code> or if <code>parameters</code> does not have * length == 4 * @throws ZeroException if <code>parameters[3]</code> * (<tt>d</tt>) is 0 */ private void validateParameters(double[] parameters) throws ZeroException { if (parameters == null) { throw new NullArgumentException(LocalizedFormats.INPUT_ARRAY); } if (parameters.length != 4) { throw new DimensionMismatchException(4, parameters.length); } if (parameters[3] == 0.0) { throw new ZeroException(); } } }