/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math.ode.nonstiff; import java.util.Arrays; import java.util.HashMap; import java.util.Map; import org.apache.commons.math.fraction.BigFraction; import org.apache.commons.math.linear.Array2DRowFieldMatrix; import org.apache.commons.math.linear.Array2DRowRealMatrix; import org.apache.commons.math.linear.DefaultFieldMatrixChangingVisitor; import org.apache.commons.math.linear.FieldDecompositionSolver; import org.apache.commons.math.linear.FieldLUDecompositionImpl; import org.apache.commons.math.linear.FieldMatrix; import org.apache.commons.math.linear.MatrixUtils; /** Transformer to Nordsieck vectors for Adams integrators. * <p>This class i used by {@link AdamsBashforthIntegrator Adams-Bashforth} and * {@link AdamsMoultonIntegrator Adams-Moulton} integrators to convert between * classical representation with several previous first derivatives and Nordsieck * representation with higher order scaled derivatives.</p> * * <p>We define scaled derivatives s<sub>i</sub>(n) at step n as: * <pre> * s<sub>1</sub>(n) = h y'<sub>n</sub> for first derivative * s<sub>2</sub>(n) = h<sup>2</sup>/2 y''<sub>n</sub> for second derivative * s<sub>3</sub>(n) = h<sup>3</sup>/6 y'''<sub>n</sub> for third derivative * ... * s<sub>k</sub>(n) = h<sup>k</sup>/k! y(k)<sub>n</sub> for k<sup>th</sup> derivative * </pre></p> * * <p>With the previous definition, the classical representation of multistep methods * uses first derivatives only, i.e. it handles y<sub>n</sub>, s<sub>1</sub>(n) and * q<sub>n</sub> where q<sub>n</sub> is defined as: * <pre> * q<sub>n</sub> = [ s<sub>1</sub>(n-1) s<sub>1</sub>(n-2) ... s<sub>1</sub>(n-(k-1)) ]<sup>T</sup> * </pre> * (we omit the k index in the notation for clarity).</p> * * <p>Another possible representation uses the Nordsieck vector with * higher degrees scaled derivatives all taken at the same step, i.e it handles y<sub>n</sub>, * s<sub>1</sub>(n) and r<sub>n</sub>) where r<sub>n</sub> is defined as: * <pre> * r<sub>n</sub> = [ s<sub>2</sub>(n), s<sub>3</sub>(n) ... s<sub>k</sub>(n) ]<sup>T</sup> * </pre> * (here again we omit the k index in the notation for clarity) * </p> * * <p>Taylor series formulas show that for any index offset i, s<sub>1</sub>(n-i) can be * computed from s<sub>1</sub>(n), s<sub>2</sub>(n) ... s<sub>k</sub>(n), the formula being exact * for degree k polynomials. * <pre> * s<sub>1</sub>(n-i) = s<sub>1</sub>(n) + ∑<sub>j</sub> j (-i)<sup>j-1</sup> s<sub>j</sub>(n) * </pre> * The previous formula can be used with several values for i to compute the transform between * classical representation and Nordsieck vector at step end. The transform between r<sub>n</sub> * and q<sub>n</sub> resulting from the Taylor series formulas above is: * <pre> * q<sub>n</sub> = s<sub>1</sub>(n) u + P r<sub>n</sub> * </pre> * where u is the [ 1 1 ... 1 ]<sup>T</sup> vector and P is the (k-1)×(k-1) matrix built * with the j (-i)<sup>j-1</sup> terms: * <pre> * [ -2 3 -4 5 ... ] * [ -4 12 -32 80 ... ] * P = [ -6 27 -108 405 ... ] * [ -8 48 -256 1280 ... ] * [ ... ] * </pre></p> * * <p>Changing -i into +i in the formula above can be used to compute a similar transform between * classical representation and Nordsieck vector at step start. The resulting matrix is simply * the absolute value of matrix P.</p> * * <p>For {@link AdamsBashforthIntegrator Adams-Bashforth} method, the Nordsieck vector * at step n+1 is computed from the Nordsieck vector at step n as follows: * <ul> * <li>y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n) + u<sup>T</sup> r<sub>n</sub></li> * <li>s<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, y<sub>n+1</sub>)</li> * <li>r<sub>n+1</sub> = (s<sub>1</sub>(n) - s<sub>1</sub>(n+1)) P<sup>-1</sup> u + P<sup>-1</sup> A P r<sub>n</sub></li> * </ul> * where A is a rows shifting matrix (the lower left part is an identity matrix): * <pre> * [ 0 0 ... 0 0 | 0 ] * [ ---------------+---] * [ 1 0 ... 0 0 | 0 ] * A = [ 0 1 ... 0 0 | 0 ] * [ ... | 0 ] * [ 0 0 ... 1 0 | 0 ] * [ 0 0 ... 0 1 | 0 ] * </pre></p> * * <p>For {@link AdamsMoultonIntegrator Adams-Moulton} method, the predicted Nordsieck vector * at step n+1 is computed from the Nordsieck vector at step n as follows: * <ul> * <li>Y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n) + u<sup>T</sup> r<sub>n</sub></li> * <li>S<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, Y<sub>n+1</sub>)</li> * <li>R<sub>n+1</sub> = (s<sub>1</sub>(n) - s<sub>1</sub>(n+1)) P<sup>-1</sup> u + P<sup>-1</sup> A P r<sub>n</sub></li> * </ul> * From this predicted vector, the corrected vector is computed as follows: * <ul> * <li>y<sub>n+1</sub> = y<sub>n</sub> + S<sub>1</sub>(n+1) + [ -1 +1 -1 +1 ... ±1 ] r<sub>n+1</sub></li> * <li>s<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, y<sub>n+1</sub>)</li> * <li>r<sub>n+1</sub> = R<sub>n+1</sub> + (s<sub>1</sub>(n+1) - S<sub>1</sub>(n+1)) P<sup>-1</sup> u</li> * </ul> * where the upper case Y<sub>n+1</sub>, S<sub>1</sub>(n+1) and R<sub>n+1</sub> represent the * predicted states whereas the lower case y<sub>n+1</sub>, s<sub>n+1</sub> and r<sub>n+1</sub> * represent the corrected states.</p> * * <p>We observe that both methods use similar update formulas. In both cases a P<sup>-1</sup>u * vector and a P<sup>-1</sup> A P matrix are used that do not depend on the state, * they only depend on k. This class handles these transformations.</p> * * @version $Revision: 810196 $ $Date: 2009-09-01 21:47:46 +0200 (mar. 01 sept. 2009) $ * @since 2.0 */ public class AdamsNordsieckTransformer { /** Cache for already computed coefficients. */ private static final Map<Integer, AdamsNordsieckTransformer> CACHE = new HashMap<Integer, AdamsNordsieckTransformer>(); /** Initialization matrix for the higher order derivatives wrt y'', y''' ... */ private final Array2DRowRealMatrix initialization; /** Update matrix for the higher order derivatives h<sup>2</sup>/2y'', h<sup>3</sup>/6 y''' ... */ private final Array2DRowRealMatrix update; /** Update coefficients of the higher order derivatives wrt y'. */ private final double[] c1; /** Simple constructor. * @param nSteps number of steps of the multistep method * (excluding the one being computed) */ private AdamsNordsieckTransformer(final int nSteps) { // compute exact coefficients FieldMatrix<BigFraction> bigP = buildP(nSteps); FieldDecompositionSolver<BigFraction> pSolver = new FieldLUDecompositionImpl<BigFraction>(bigP).getSolver(); BigFraction[] u = new BigFraction[nSteps]; Arrays.fill(u, BigFraction.ONE); BigFraction[] bigC1 = pSolver.solve(u); // update coefficients are computed by combining transform from // Nordsieck to multistep, then shifting rows to represent step advance // then applying inverse transform BigFraction[][] shiftedP = bigP.getData(); for (int i = shiftedP.length - 1; i > 0; --i) { // shift rows shiftedP[i] = shiftedP[i - 1]; } shiftedP[0] = new BigFraction[nSteps]; Arrays.fill(shiftedP[0], BigFraction.ZERO); FieldMatrix<BigFraction> bigMSupdate = pSolver.solve(new Array2DRowFieldMatrix<BigFraction>(shiftedP, false)); // initialization coefficients, computed from a R matrix = abs(P) bigP.walkInOptimizedOrder(new DefaultFieldMatrixChangingVisitor<BigFraction>(BigFraction.ZERO) { /** {@inheritDoc} */ @Override public BigFraction visit(int row, int column, BigFraction value) { return ((column & 0x1) == 0x1) ? value : value.negate(); } }); FieldMatrix<BigFraction> bigRInverse = new FieldLUDecompositionImpl<BigFraction>(bigP).getSolver().getInverse(); // convert coefficients to double initialization = MatrixUtils.bigFractionMatrixToRealMatrix(bigRInverse); update = MatrixUtils.bigFractionMatrixToRealMatrix(bigMSupdate); c1 = new double[nSteps]; for (int i = 0; i < nSteps; ++i) { c1[i] = bigC1[i].doubleValue(); } } /** Get the Nordsieck transformer for a given number of steps. * @param nSteps number of steps of the multistep method * (excluding the one being computed) * @return Nordsieck transformer for the specified number of steps */ public static AdamsNordsieckTransformer getInstance(final int nSteps) { synchronized(CACHE) { AdamsNordsieckTransformer t = CACHE.get(nSteps); if (t == null) { t = new AdamsNordsieckTransformer(nSteps); CACHE.put(nSteps, t); } return t; } } /** Get the number of steps of the method * (excluding the one being computed). * @return number of steps of the method * (excluding the one being computed) */ public int getNSteps() { return c1.length; } /** Build the P matrix. * <p>The P matrix general terms are shifted j (-i)<sup>j-1</sup> terms: * <pre> * [ -2 3 -4 5 ... ] * [ -4 12 -32 80 ... ] * P = [ -6 27 -108 405 ... ] * [ -8 48 -256 1280 ... ] * [ ... ] * </pre></p> * @param nSteps number of steps of the multistep method * (excluding the one being computed) * @return P matrix */ private FieldMatrix<BigFraction> buildP(final int nSteps) { final BigFraction[][] pData = new BigFraction[nSteps][nSteps]; for (int i = 0; i < pData.length; ++i) { // build the P matrix elements from Taylor series formulas final BigFraction[] pI = pData[i]; final int factor = -(i + 1); int aj = factor; for (int j = 0; j < pI.length; ++j) { pI[j] = new BigFraction(aj * (j + 2)); aj *= factor; } } return new Array2DRowFieldMatrix<BigFraction>(pData, false); } /** Initialize the high order scaled derivatives at step start. * @param first first scaled derivative at step start * @param multistep scaled derivatives after step start (hy'1, ..., hy'k-1) * will be modified * @return high order derivatives at step start */ public Array2DRowRealMatrix initializeHighOrderDerivatives(final double[] first, final double[][] multistep) { for (int i = 0; i < multistep.length; ++i) { final double[] msI = multistep[i]; for (int j = 0; j < first.length; ++j) { msI[j] -= first[j]; } } return initialization.multiply(new Array2DRowRealMatrix(multistep, false)); } /** Update the high order scaled derivatives for Adams integrators (phase 1). * <p>The complete update of high order derivatives has a form similar to: * <pre> * r<sub>n+1</sub> = (s<sub>1</sub>(n) - s<sub>1</sub>(n+1)) P<sup>-1</sup> u + P<sup>-1</sup> A P r<sub>n</sub> * </pre> * this method computes the P<sup>-1</sup> A P r<sub>n</sub> part.</p> * @param highOrder high order scaled derivatives * (h<sup>2</sup>/2 y'', ... h<sup>k</sup>/k! y(k)) * @return updated high order derivatives * @see #updateHighOrderDerivativesPhase2(double[], double[], Array2DRowRealMatrix) */ public Array2DRowRealMatrix updateHighOrderDerivativesPhase1(final Array2DRowRealMatrix highOrder) { return update.multiply(highOrder); } /** Update the high order scaled derivatives Adams integrators (phase 2). * <p>The complete update of high order derivatives has a form similar to: * <pre> * r<sub>n+1</sub> = (s<sub>1</sub>(n) - s<sub>1</sub>(n+1)) P<sup>-1</sup> u + P<sup>-1</sup> A P r<sub>n</sub> * </pre> * this method computes the (s<sub>1</sub>(n) - s<sub>1</sub>(n+1)) P<sup>-1</sup> u part.</p> * <p>Phase 1 of the update must already have been performed.</p> * @param start first order scaled derivatives at step start * @param end first order scaled derivatives at step end * @param highOrder high order scaled derivatives, will be modified * (h<sup>2</sup>/2 y'', ... h<sup>k</sup>/k! y(k)) * @see #updateHighOrderDerivativesPhase1(Array2DRowRealMatrix) */ public void updateHighOrderDerivativesPhase2(final double[] start, final double[] end, final Array2DRowRealMatrix highOrder) { final double[][] data = highOrder.getDataRef(); for (int i = 0; i < data.length; ++i) { final double[] dataI = data[i]; final double c1I = c1[i]; for (int j = 0; j < dataI.length; ++j) { dataI[j] += c1I * (start[j] - end[j]); } } } }