/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math.optimization.direct; import java.util.Comparator; import org.apache.commons.math.FunctionEvaluationException; import org.apache.commons.math.optimization.OptimizationException; import org.apache.commons.math.optimization.RealPointValuePair; /** * This class implements the Nelder-Mead direct search method. * * @version $Revision: 1070725 $ $Date: 2011-02-15 02:31:12 +0100 (mar. 15 févr. 2011) $ * @see MultiDirectional * @since 1.2 */ public class NelderMead extends DirectSearchOptimizer { /** Reflection coefficient. */ private final double rho; /** Expansion coefficient. */ private final double khi; /** Contraction coefficient. */ private final double gamma; /** Shrinkage coefficient. */ private final double sigma; /** Build a Nelder-Mead optimizer with default coefficients. * <p>The default coefficients are 1.0 for rho, 2.0 for khi and 0.5 * for both gamma and sigma.</p> */ public NelderMead() { this.rho = 1.0; this.khi = 2.0; this.gamma = 0.5; this.sigma = 0.5; } /** Build a Nelder-Mead optimizer with specified coefficients. * @param rho reflection coefficient * @param khi expansion coefficient * @param gamma contraction coefficient * @param sigma shrinkage coefficient */ public NelderMead(final double rho, final double khi, final double gamma, final double sigma) { this.rho = rho; this.khi = khi; this.gamma = gamma; this.sigma = sigma; } /** {@inheritDoc} */ @Override protected void iterateSimplex(final Comparator<RealPointValuePair> comparator) throws FunctionEvaluationException, OptimizationException { incrementIterationsCounter(); // the simplex has n+1 point if dimension is n final int n = simplex.length - 1; // interesting values final RealPointValuePair best = simplex[0]; final RealPointValuePair secondBest = simplex[n-1]; final RealPointValuePair worst = simplex[n]; final double[] xWorst = worst.getPointRef(); // compute the centroid of the best vertices // (dismissing the worst point at index n) final double[] centroid = new double[n]; for (int i = 0; i < n; ++i) { final double[] x = simplex[i].getPointRef(); for (int j = 0; j < n; ++j) { centroid[j] += x[j]; } } final double scaling = 1.0 / n; for (int j = 0; j < n; ++j) { centroid[j] *= scaling; } // compute the reflection point final double[] xR = new double[n]; for (int j = 0; j < n; ++j) { xR[j] = centroid[j] + rho * (centroid[j] - xWorst[j]); } final RealPointValuePair reflected = new RealPointValuePair(xR, evaluate(xR), false); if ((comparator.compare(best, reflected) <= 0) && (comparator.compare(reflected, secondBest) < 0)) { // accept the reflected point replaceWorstPoint(reflected, comparator); } else if (comparator.compare(reflected, best) < 0) { // compute the expansion point final double[] xE = new double[n]; for (int j = 0; j < n; ++j) { xE[j] = centroid[j] + khi * (xR[j] - centroid[j]); } final RealPointValuePair expanded = new RealPointValuePair(xE, evaluate(xE), false); if (comparator.compare(expanded, reflected) < 0) { // accept the expansion point replaceWorstPoint(expanded, comparator); } else { // accept the reflected point replaceWorstPoint(reflected, comparator); } } else { if (comparator.compare(reflected, worst) < 0) { // perform an outside contraction final double[] xC = new double[n]; for (int j = 0; j < n; ++j) { xC[j] = centroid[j] + gamma * (xR[j] - centroid[j]); } final RealPointValuePair outContracted = new RealPointValuePair(xC, evaluate(xC), false); if (comparator.compare(outContracted, reflected) <= 0) { // accept the contraction point replaceWorstPoint(outContracted, comparator); return; } } else { // perform an inside contraction final double[] xC = new double[n]; for (int j = 0; j < n; ++j) { xC[j] = centroid[j] - gamma * (centroid[j] - xWorst[j]); } final RealPointValuePair inContracted = new RealPointValuePair(xC, evaluate(xC), false); if (comparator.compare(inContracted, worst) < 0) { // accept the contraction point replaceWorstPoint(inContracted, comparator); return; } } // perform a shrink final double[] xSmallest = simplex[0].getPointRef(); for (int i = 1; i < simplex.length; ++i) { final double[] x = simplex[i].getPoint(); for (int j = 0; j < n; ++j) { x[j] = xSmallest[j] + sigma * (x[j] - xSmallest[j]); } simplex[i] = new RealPointValuePair(x, Double.NaN, false); } evaluateSimplex(comparator); } } }