/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math.analysis.solvers; import org.apache.commons.math.ConvergenceException; import org.apache.commons.math.FunctionEvaluationException; import org.apache.commons.math.MaxIterationsExceededException; import org.apache.commons.math.analysis.UnivariateRealFunction; import org.apache.commons.math.util.FastMath; import org.apache.commons.math.util.MathUtils; /** * Implements the <a href="http://mathworld.wolfram.com/MullersMethod.html"> * Muller's Method</a> for root finding of real univariate functions. For * reference, see <b>Elementary Numerical Analysis</b>, ISBN 0070124477, * chapter 3. * <p> * Muller's method applies to both real and complex functions, but here we * restrict ourselves to real functions. Methods solve() and solve2() find * real zeros, using different ways to bypass complex arithmetics.</p> * * @version $Revision: 1070725 $ $Date: 2011-02-15 02:31:12 +0100 (mar. 15 févr. 2011) $ * @since 1.2 */ public class MullerSolver extends UnivariateRealSolverImpl { /** * Construct a solver for the given function. * * @param f function to solve * @deprecated as of 2.0 the function to solve is passed as an argument * to the {@link #solve(UnivariateRealFunction, double, double)} or * {@link UnivariateRealSolverImpl#solve(UnivariateRealFunction, double, double, double)} * method. */ @Deprecated public MullerSolver(UnivariateRealFunction f) { super(f, 100, 1E-6); } /** * Construct a solver. * @deprecated in 2.2 (to be removed in 3.0). */ @Deprecated public MullerSolver() { super(100, 1E-6); } /** {@inheritDoc} */ @Deprecated public double solve(final double min, final double max) throws ConvergenceException, FunctionEvaluationException { return solve(f, min, max); } /** {@inheritDoc} */ @Deprecated public double solve(final double min, final double max, final double initial) throws ConvergenceException, FunctionEvaluationException { return solve(f, min, max, initial); } /** * Find a real root in the given interval with initial value. * <p> * Requires bracketing condition.</p> * * @param f the function to solve * @param min the lower bound for the interval * @param max the upper bound for the interval * @param initial the start value to use * @param maxEval Maximum number of evaluations. * @return the point at which the function value is zero * @throws MaxIterationsExceededException if the maximum iteration count is exceeded * or the solver detects convergence problems otherwise * @throws FunctionEvaluationException if an error occurs evaluating the function * @throws IllegalArgumentException if any parameters are invalid */ @Override public double solve(int maxEval, final UnivariateRealFunction f, final double min, final double max, final double initial) throws MaxIterationsExceededException, FunctionEvaluationException { setMaximalIterationCount(maxEval); return solve(f, min, max, initial); } /** * Find a real root in the given interval with initial value. * <p> * Requires bracketing condition.</p> * * @param f the function to solve * @param min the lower bound for the interval * @param max the upper bound for the interval * @param initial the start value to use * @return the point at which the function value is zero * @throws MaxIterationsExceededException if the maximum iteration count is exceeded * or the solver detects convergence problems otherwise * @throws FunctionEvaluationException if an error occurs evaluating the function * @throws IllegalArgumentException if any parameters are invalid * @deprecated in 2.2 (to be removed in 3.0). */ @Deprecated public double solve(final UnivariateRealFunction f, final double min, final double max, final double initial) throws MaxIterationsExceededException, FunctionEvaluationException { // check for zeros before verifying bracketing if (f.value(min) == 0.0) { return min; } if (f.value(max) == 0.0) { return max; } if (f.value(initial) == 0.0) { return initial; } verifyBracketing(min, max, f); verifySequence(min, initial, max); if (isBracketing(min, initial, f)) { return solve(f, min, initial); } else { return solve(f, initial, max); } } /** * Find a real root in the given interval. * <p> * Original Muller's method would have function evaluation at complex point. * Since our f(x) is real, we have to find ways to avoid that. Bracketing * condition is one way to go: by requiring bracketing in every iteration, * the newly computed approximation is guaranteed to be real.</p> * <p> * Normally Muller's method converges quadratically in the vicinity of a * zero, however it may be very slow in regions far away from zeros. For * example, f(x) = exp(x) - 1, min = -50, max = 100. In such case we use * bisection as a safety backup if it performs very poorly.</p> * <p> * The formulas here use divided differences directly.</p> * * @param f the function to solve * @param min the lower bound for the interval * @param max the upper bound for the interval * @param maxEval Maximum number of evaluations. * @return the point at which the function value is zero * @throws MaxIterationsExceededException if the maximum iteration count is exceeded * or the solver detects convergence problems otherwise * @throws FunctionEvaluationException if an error occurs evaluating the function * @throws IllegalArgumentException if any parameters are invalid */ @Override public double solve(int maxEval, final UnivariateRealFunction f, final double min, final double max) throws MaxIterationsExceededException, FunctionEvaluationException { setMaximalIterationCount(maxEval); return solve(f, min, max); } /** * Find a real root in the given interval. * <p> * Original Muller's method would have function evaluation at complex point. * Since our f(x) is real, we have to find ways to avoid that. Bracketing * condition is one way to go: by requiring bracketing in every iteration, * the newly computed approximation is guaranteed to be real.</p> * <p> * Normally Muller's method converges quadratically in the vicinity of a * zero, however it may be very slow in regions far away from zeros. For * example, f(x) = exp(x) - 1, min = -50, max = 100. In such case we use * bisection as a safety backup if it performs very poorly.</p> * <p> * The formulas here use divided differences directly.</p> * * @param f the function to solve * @param min the lower bound for the interval * @param max the upper bound for the interval * @return the point at which the function value is zero * @throws MaxIterationsExceededException if the maximum iteration count is exceeded * or the solver detects convergence problems otherwise * @throws FunctionEvaluationException if an error occurs evaluating the function * @throws IllegalArgumentException if any parameters are invalid * @deprecated in 2.2 (to be removed in 3.0). */ @Deprecated public double solve(final UnivariateRealFunction f, final double min, final double max) throws MaxIterationsExceededException, FunctionEvaluationException { // [x0, x2] is the bracketing interval in each iteration // x1 is the last approximation and an interpolation point in (x0, x2) // x is the new root approximation and new x1 for next round // d01, d12, d012 are divided differences double x0 = min; double y0 = f.value(x0); double x2 = max; double y2 = f.value(x2); double x1 = 0.5 * (x0 + x2); double y1 = f.value(x1); // check for zeros before verifying bracketing if (y0 == 0.0) { return min; } if (y2 == 0.0) { return max; } verifyBracketing(min, max, f); double oldx = Double.POSITIVE_INFINITY; for (int i = 1; i <= maximalIterationCount; ++i) { // Muller's method employs quadratic interpolation through // x0, x1, x2 and x is the zero of the interpolating parabola. // Due to bracketing condition, this parabola must have two // real roots and we choose one in [x0, x2] to be x. final double d01 = (y1 - y0) / (x1 - x0); final double d12 = (y2 - y1) / (x2 - x1); final double d012 = (d12 - d01) / (x2 - x0); final double c1 = d01 + (x1 - x0) * d012; final double delta = c1 * c1 - 4 * y1 * d012; final double xplus = x1 + (-2.0 * y1) / (c1 + FastMath.sqrt(delta)); final double xminus = x1 + (-2.0 * y1) / (c1 - FastMath.sqrt(delta)); // xplus and xminus are two roots of parabola and at least // one of them should lie in (x0, x2) final double x = isSequence(x0, xplus, x2) ? xplus : xminus; final double y = f.value(x); // check for convergence final double tolerance = FastMath.max(relativeAccuracy * FastMath.abs(x), absoluteAccuracy); if (FastMath.abs(x - oldx) <= tolerance) { setResult(x, i); return result; } if (FastMath.abs(y) <= functionValueAccuracy) { setResult(x, i); return result; } // Bisect if convergence is too slow. Bisection would waste // our calculation of x, hopefully it won't happen often. // the real number equality test x == x1 is intentional and // completes the proximity tests above it boolean bisect = (x < x1 && (x1 - x0) > 0.95 * (x2 - x0)) || (x > x1 && (x2 - x1) > 0.95 * (x2 - x0)) || (x == x1); // prepare the new bracketing interval for next iteration if (!bisect) { x0 = x < x1 ? x0 : x1; y0 = x < x1 ? y0 : y1; x2 = x > x1 ? x2 : x1; y2 = x > x1 ? y2 : y1; x1 = x; y1 = y; oldx = x; } else { double xm = 0.5 * (x0 + x2); double ym = f.value(xm); if (MathUtils.sign(y0) + MathUtils.sign(ym) == 0.0) { x2 = xm; y2 = ym; } else { x0 = xm; y0 = ym; } x1 = 0.5 * (x0 + x2); y1 = f.value(x1); oldx = Double.POSITIVE_INFINITY; } } throw new MaxIterationsExceededException(maximalIterationCount); } /** * Find a real root in the given interval. * <p> * solve2() differs from solve() in the way it avoids complex operations. * Except for the initial [min, max], solve2() does not require bracketing * condition, e.g. f(x0), f(x1), f(x2) can have the same sign. If complex * number arises in the computation, we simply use its modulus as real * approximation.</p> * <p> * Because the interval may not be bracketing, bisection alternative is * not applicable here. However in practice our treatment usually works * well, especially near real zeros where the imaginary part of complex * approximation is often negligible.</p> * <p> * The formulas here do not use divided differences directly.</p> * * @param min the lower bound for the interval * @param max the upper bound for the interval * @return the point at which the function value is zero * @throws MaxIterationsExceededException if the maximum iteration count is exceeded * or the solver detects convergence problems otherwise * @throws FunctionEvaluationException if an error occurs evaluating the function * @throws IllegalArgumentException if any parameters are invalid * @deprecated replaced by {@link #solve2(UnivariateRealFunction, double, double)} * since 2.0 */ @Deprecated public double solve2(final double min, final double max) throws MaxIterationsExceededException, FunctionEvaluationException { return solve2(f, min, max); } /** * Find a real root in the given interval. * <p> * solve2() differs from solve() in the way it avoids complex operations. * Except for the initial [min, max], solve2() does not require bracketing * condition, e.g. f(x0), f(x1), f(x2) can have the same sign. If complex * number arises in the computation, we simply use its modulus as real * approximation.</p> * <p> * Because the interval may not be bracketing, bisection alternative is * not applicable here. However in practice our treatment usually works * well, especially near real zeros where the imaginary part of complex * approximation is often negligible.</p> * <p> * The formulas here do not use divided differences directly.</p> * * @param f the function to solve * @param min the lower bound for the interval * @param max the upper bound for the interval * @return the point at which the function value is zero * @throws MaxIterationsExceededException if the maximum iteration count is exceeded * or the solver detects convergence problems otherwise * @throws FunctionEvaluationException if an error occurs evaluating the function * @throws IllegalArgumentException if any parameters are invalid * @deprecated in 2.2 (to be removed in 3.0). */ @Deprecated public double solve2(final UnivariateRealFunction f, final double min, final double max) throws MaxIterationsExceededException, FunctionEvaluationException { // x2 is the last root approximation // x is the new approximation and new x2 for next round // x0 < x1 < x2 does not hold here double x0 = min; double y0 = f.value(x0); double x1 = max; double y1 = f.value(x1); double x2 = 0.5 * (x0 + x1); double y2 = f.value(x2); // check for zeros before verifying bracketing if (y0 == 0.0) { return min; } if (y1 == 0.0) { return max; } verifyBracketing(min, max, f); double oldx = Double.POSITIVE_INFINITY; for (int i = 1; i <= maximalIterationCount; ++i) { // quadratic interpolation through x0, x1, x2 final double q = (x2 - x1) / (x1 - x0); final double a = q * (y2 - (1 + q) * y1 + q * y0); final double b = (2 * q + 1) * y2 - (1 + q) * (1 + q) * y1 + q * q * y0; final double c = (1 + q) * y2; final double delta = b * b - 4 * a * c; double x; final double denominator; if (delta >= 0.0) { // choose a denominator larger in magnitude double dplus = b + FastMath.sqrt(delta); double dminus = b - FastMath.sqrt(delta); denominator = FastMath.abs(dplus) > FastMath.abs(dminus) ? dplus : dminus; } else { // take the modulus of (B +/- FastMath.sqrt(delta)) denominator = FastMath.sqrt(b * b - delta); } if (denominator != 0) { x = x2 - 2.0 * c * (x2 - x1) / denominator; // perturb x if it exactly coincides with x1 or x2 // the equality tests here are intentional while (x == x1 || x == x2) { x += absoluteAccuracy; } } else { // extremely rare case, get a random number to skip it x = min + FastMath.random() * (max - min); oldx = Double.POSITIVE_INFINITY; } final double y = f.value(x); // check for convergence final double tolerance = FastMath.max(relativeAccuracy * FastMath.abs(x), absoluteAccuracy); if (FastMath.abs(x - oldx) <= tolerance) { setResult(x, i); return result; } if (FastMath.abs(y) <= functionValueAccuracy) { setResult(x, i); return result; } // prepare the next iteration x0 = x1; y0 = y1; x1 = x2; y1 = y2; x2 = x; y2 = y; oldx = x; } throw new MaxIterationsExceededException(maximalIterationCount); } }