/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math.optimization.fitting; import org.apache.commons.math.exception.util.LocalizedFormats; import org.apache.commons.math.optimization.OptimizationException; import org.apache.commons.math.util.FastMath; /** This class guesses harmonic coefficients from a sample. * <p>The algorithm used to guess the coefficients is as follows:</p> * <p>We know f (t) at some sampling points t<sub>i</sub> and want to find a, * ω and φ such that f (t) = a cos (ω t + φ). * </p> * * <p>From the analytical expression, we can compute two primitives : * <pre> * If2 (t) = ∫ f<sup>2</sup> = a<sup>2</sup> × [t + S (t)] / 2 * If'2 (t) = ∫ f'<sup>2</sup> = a<sup>2</sup> ω<sup>2</sup> × [t - S (t)] / 2 * where S (t) = sin (2 (ω t + φ)) / (2 ω) * </pre> * </p> * * <p>We can remove S between these expressions : * <pre> * If'2 (t) = a<sup>2</sup> ω<sup>2</sup> t - ω<sup>2</sup> If2 (t) * </pre> * </p> * * <p>The preceding expression shows that If'2 (t) is a linear * combination of both t and If2 (t): If'2 (t) = A × t + B × If2 (t) * </p> * * <p>From the primitive, we can deduce the same form for definite * integrals between t<sub>1</sub> and t<sub>i</sub> for each t<sub>i</sub> : * <pre> * If2 (t<sub>i</sub>) - If2 (t<sub>1</sub>) = A × (t<sub>i</sub> - t<sub>1</sub>) + B × (If2 (t<sub>i</sub>) - If2 (t<sub>1</sub>)) * </pre> * </p> * * <p>We can find the coefficients A and B that best fit the sample * to this linear expression by computing the definite integrals for * each sample points. * </p> * * <p>For a bilinear expression z (x<sub>i</sub>, y<sub>i</sub>) = A × x<sub>i</sub> + B × y<sub>i</sub>, the * coefficients A and B that minimize a least square criterion * ∑ (z<sub>i</sub> - z (x<sub>i</sub>, y<sub>i</sub>))<sup>2</sup> are given by these expressions:</p> * <pre> * * ∑y<sub>i</sub>y<sub>i</sub> ∑x<sub>i</sub>z<sub>i</sub> - ∑x<sub>i</sub>y<sub>i</sub> ∑y<sub>i</sub>z<sub>i</sub> * A = ------------------------ * ∑x<sub>i</sub>x<sub>i</sub> ∑y<sub>i</sub>y<sub>i</sub> - ∑x<sub>i</sub>y<sub>i</sub> ∑x<sub>i</sub>y<sub>i</sub> * * ∑x<sub>i</sub>x<sub>i</sub> ∑y<sub>i</sub>z<sub>i</sub> - ∑x<sub>i</sub>y<sub>i</sub> ∑x<sub>i</sub>z<sub>i</sub> * B = ------------------------ * ∑x<sub>i</sub>x<sub>i</sub> ∑y<sub>i</sub>y<sub>i</sub> - ∑x<sub>i</sub>y<sub>i</sub> ∑x<sub>i</sub>y<sub>i</sub> * </pre> * </p> * * * <p>In fact, we can assume both a and ω are positive and * compute them directly, knowing that A = a<sup>2</sup> ω<sup>2</sup> and that * B = - ω<sup>2</sup>. The complete algorithm is therefore:</p> * <pre> * * for each t<sub>i</sub> from t<sub>1</sub> to t<sub>n-1</sub>, compute: * f (t<sub>i</sub>) * f' (t<sub>i</sub>) = (f (t<sub>i+1</sub>) - f(t<sub>i-1</sub>)) / (t<sub>i+1</sub> - t<sub>i-1</sub>) * x<sub>i</sub> = t<sub>i</sub> - t<sub>1</sub> * y<sub>i</sub> = ∫ f<sup>2</sup> from t<sub>1</sub> to t<sub>i</sub> * z<sub>i</sub> = ∫ f'<sup>2</sup> from t<sub>1</sub> to t<sub>i</sub> * update the sums ∑x<sub>i</sub>x<sub>i</sub>, ∑y<sub>i</sub>y<sub>i</sub>, ∑x<sub>i</sub>y<sub>i</sub>, ∑x<sub>i</sub>z<sub>i</sub> and ∑y<sub>i</sub>z<sub>i</sub> * end for * * |-------------------------- * \ | ∑y<sub>i</sub>y<sub>i</sub> ∑x<sub>i</sub>z<sub>i</sub> - ∑x<sub>i</sub>y<sub>i</sub> ∑y<sub>i</sub>z<sub>i</sub> * a = \ | ------------------------ * \| ∑x<sub>i</sub>y<sub>i</sub> ∑x<sub>i</sub>z<sub>i</sub> - ∑x<sub>i</sub>x<sub>i</sub> ∑y<sub>i</sub>z<sub>i</sub> * * * |-------------------------- * \ | ∑x<sub>i</sub>y<sub>i</sub> ∑x<sub>i</sub>z<sub>i</sub> - ∑x<sub>i</sub>x<sub>i</sub> ∑y<sub>i</sub>z<sub>i</sub> * ω = \ | ------------------------ * \| ∑x<sub>i</sub>x<sub>i</sub> ∑y<sub>i</sub>y<sub>i</sub> - ∑x<sub>i</sub>y<sub>i</sub> ∑x<sub>i</sub>y<sub>i</sub> * * </pre> * </p> * <p>Once we know ω, we can compute: * <pre> * fc = ω f (t) cos (ω t) - f' (t) sin (ω t) * fs = ω f (t) sin (ω t) + f' (t) cos (ω t) * </pre> * </p> * <p>It appears that <code>fc = a ω cos (φ)</code> and * <code>fs = -a ω sin (φ)</code>, so we can use these * expressions to compute φ. The best estimate over the sample is * given by averaging these expressions. * </p> * <p>Since integrals and means are involved in the preceding * estimations, these operations run in O(n) time, where n is the * number of measurements.</p> * @version $Revision: 1056034 $ $Date: 2011-01-06 20:41:43 +0100 (jeu. 06 janv. 2011) $ * @since 2.0 */ public class HarmonicCoefficientsGuesser { /** Sampled observations. */ private final WeightedObservedPoint[] observations; /** Guessed amplitude. */ private double a; /** Guessed pulsation ω. */ private double omega; /** Guessed phase φ. */ private double phi; /** Simple constructor. * @param observations sampled observations */ public HarmonicCoefficientsGuesser(WeightedObservedPoint[] observations) { this.observations = observations.clone(); a = Double.NaN; omega = Double.NaN; } /** Estimate a first guess of the coefficients. * @exception OptimizationException if the sample is too short or if * the first guess cannot be computed (when the elements under the * square roots are negative). * */ public void guess() throws OptimizationException { sortObservations(); guessAOmega(); guessPhi(); } /** Sort the observations with respect to the abscissa. */ private void sortObservations() { // Since the samples are almost always already sorted, this // method is implemented as an insertion sort that reorders the // elements in place. Insertion sort is very efficient in this case. WeightedObservedPoint curr = observations[0]; for (int j = 1; j < observations.length; ++j) { WeightedObservedPoint prec = curr; curr = observations[j]; if (curr.getX() < prec.getX()) { // the current element should be inserted closer to the beginning int i = j - 1; WeightedObservedPoint mI = observations[i]; while ((i >= 0) && (curr.getX() < mI.getX())) { observations[i + 1] = mI; if (i-- != 0) { mI = observations[i]; } } observations[i + 1] = curr; curr = observations[j]; } } } /** Estimate a first guess of the a and ω coefficients. * @exception OptimizationException if the sample is too short or if * the first guess cannot be computed (when the elements under the * square roots are negative). */ private void guessAOmega() throws OptimizationException { // initialize the sums for the linear model between the two integrals double sx2 = 0.0; double sy2 = 0.0; double sxy = 0.0; double sxz = 0.0; double syz = 0.0; double currentX = observations[0].getX(); double currentY = observations[0].getY(); double f2Integral = 0; double fPrime2Integral = 0; final double startX = currentX; for (int i = 1; i < observations.length; ++i) { // one step forward final double previousX = currentX; final double previousY = currentY; currentX = observations[i].getX(); currentY = observations[i].getY(); // update the integrals of f<sup>2</sup> and f'<sup>2</sup> // considering a linear model for f (and therefore constant f') final double dx = currentX - previousX; final double dy = currentY - previousY; final double f2StepIntegral = dx * (previousY * previousY + previousY * currentY + currentY * currentY) / 3; final double fPrime2StepIntegral = dy * dy / dx; final double x = currentX - startX; f2Integral += f2StepIntegral; fPrime2Integral += fPrime2StepIntegral; sx2 += x * x; sy2 += f2Integral * f2Integral; sxy += x * f2Integral; sxz += x * fPrime2Integral; syz += f2Integral * fPrime2Integral; } // compute the amplitude and pulsation coefficients double c1 = sy2 * sxz - sxy * syz; double c2 = sxy * sxz - sx2 * syz; double c3 = sx2 * sy2 - sxy * sxy; if ((c1 / c2 < 0.0) || (c2 / c3 < 0.0)) { throw new OptimizationException(LocalizedFormats.UNABLE_TO_FIRST_GUESS_HARMONIC_COEFFICIENTS); } a = FastMath.sqrt(c1 / c2); omega = FastMath.sqrt(c2 / c3); } /** Estimate a first guess of the φ coefficient. */ private void guessPhi() { // initialize the means double fcMean = 0.0; double fsMean = 0.0; double currentX = observations[0].getX(); double currentY = observations[0].getY(); for (int i = 1; i < observations.length; ++i) { // one step forward final double previousX = currentX; final double previousY = currentY; currentX = observations[i].getX(); currentY = observations[i].getY(); final double currentYPrime = (currentY - previousY) / (currentX - previousX); double omegaX = omega * currentX; double cosine = FastMath.cos(omegaX); double sine = FastMath.sin(omegaX); fcMean += omega * currentY * cosine - currentYPrime * sine; fsMean += omega * currentY * sine + currentYPrime * cosine; } phi = FastMath.atan2(-fsMean, fcMean); } /** Get the guessed amplitude a. * @return guessed amplitude a; */ public double getGuessedAmplitude() { return a; } /** Get the guessed pulsation ω. * @return guessed pulsation ω */ public double getGuessedPulsation() { return omega; } /** Get the guessed phase φ. * @return guessed phase φ */ public double getGuessedPhase() { return phi; } }