/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math.optimization.direct; import java.util.Comparator; import org.apache.commons.math.FunctionEvaluationException; import org.apache.commons.math.optimization.OptimizationException; import org.apache.commons.math.optimization.RealConvergenceChecker; import org.apache.commons.math.optimization.RealPointValuePair; /** * This class implements the multi-directional direct search method. * * @version $Revision: 1070725 $ $Date: 2011-02-15 02:31:12 +0100 (mar. 15 févr. 2011) $ * @see NelderMead * @since 1.2 */ public class MultiDirectional extends DirectSearchOptimizer { /** Expansion coefficient. */ private final double khi; /** Contraction coefficient. */ private final double gamma; /** Build a multi-directional optimizer with default coefficients. * <p>The default values are 2.0 for khi and 0.5 for gamma.</p> */ public MultiDirectional() { this.khi = 2.0; this.gamma = 0.5; } /** Build a multi-directional optimizer with specified coefficients. * @param khi expansion coefficient * @param gamma contraction coefficient */ public MultiDirectional(final double khi, final double gamma) { this.khi = khi; this.gamma = gamma; } /** {@inheritDoc} */ @Override protected void iterateSimplex(final Comparator<RealPointValuePair> comparator) throws FunctionEvaluationException, OptimizationException, IllegalArgumentException { final RealConvergenceChecker checker = getConvergenceChecker(); while (true) { incrementIterationsCounter(); // save the original vertex final RealPointValuePair[] original = simplex; final RealPointValuePair best = original[0]; // perform a reflection step final RealPointValuePair reflected = evaluateNewSimplex(original, 1.0, comparator); if (comparator.compare(reflected, best) < 0) { // compute the expanded simplex final RealPointValuePair[] reflectedSimplex = simplex; final RealPointValuePair expanded = evaluateNewSimplex(original, khi, comparator); if (comparator.compare(reflected, expanded) <= 0) { // accept the reflected simplex simplex = reflectedSimplex; } return; } // compute the contracted simplex final RealPointValuePair contracted = evaluateNewSimplex(original, gamma, comparator); if (comparator.compare(contracted, best) < 0) { // accept the contracted simplex return; } // check convergence final int iter = getIterations(); boolean converged = true; for (int i = 0; i < simplex.length; ++i) { converged &= checker.converged(iter, original[i], simplex[i]); } if (converged) { return; } } } /** Compute and evaluate a new simplex. * @param original original simplex (to be preserved) * @param coeff linear coefficient * @param comparator comparator to use to sort simplex vertices from best to poorest * @return best point in the transformed simplex * @exception FunctionEvaluationException if the function cannot be evaluated at some point * @exception OptimizationException if the maximal number of evaluations is exceeded */ private RealPointValuePair evaluateNewSimplex(final RealPointValuePair[] original, final double coeff, final Comparator<RealPointValuePair> comparator) throws FunctionEvaluationException, OptimizationException { final double[] xSmallest = original[0].getPointRef(); final int n = xSmallest.length; // create the linearly transformed simplex simplex = new RealPointValuePair[n + 1]; simplex[0] = original[0]; for (int i = 1; i <= n; ++i) { final double[] xOriginal = original[i].getPointRef(); final double[] xTransformed = new double[n]; for (int j = 0; j < n; ++j) { xTransformed[j] = xSmallest[j] + coeff * (xSmallest[j] - xOriginal[j]); } simplex[i] = new RealPointValuePair(xTransformed, Double.NaN, false); } // evaluate it evaluateSimplex(comparator); return simplex[0]; } }