/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math.genetics; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Comparator; import java.util.List; /** * <p> * Random Key chromosome is used for permutation representation. It is a vector * of a fixed length of real numbers in [0,1] interval. The index of the i-th * smallest value in the vector represents an i-th member of the permutation. * </p> * * <p> * For example, the random key [0.2, 0.3, 0.8, 0.1] corresponds to the * permutation of indices (3,0,1,2). If the original (unpermuted) sequence would * be (a,b,c,d), this would mean the sequence (d,a,b,c). * </p> * * <p> * With this representation, common operators like n-point crossover can be * used, because any such chromosome represents a valid permutation. * </p> * * <p> * Since the chromosome (and thus its arrayRepresentation) is immutable, the * array representation is sorted only once in the constructor. * </p> * * <p> * For details, see: * <ul> * <li>Bean, J.C.: Genetic algorithms and random keys for sequencing and * optimization. ORSA Journal on Computing 6 (1994) 154–160</li> * <li>Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms. * Volume 104 of Studies in Fuzziness and Soft Computing. Physica-Verlag, * Heidelberg (2002)</li> * </ul> * </p> * * @param <T> * type of the permuted objects * @since 2.0 * @version $Revision: 811685 $ $Date: 2009-09-05 19:36:48 +0200 (sam. 05 sept. 2009) $ */ public abstract class RandomKey<T> extends AbstractListChromosome<Double> implements PermutationChromosome<T> { /** * Cache of sorted representation (unmodifiable). */ private final List<Double> sortedRepresentation; /** * Base sequence [0,1,...,n-1], permuted accorting to the representation (unmodifiable). */ private final List<Integer> baseSeqPermutation; /** * Constructor. * * @param representation list of [0,1] values representing the permutation */ public RandomKey(List<Double> representation) { super(representation); // store the sorted representation List<Double> sortedRepr = new ArrayList<Double> (getRepresentation()); Collections.sort(sortedRepr); sortedRepresentation = Collections.unmodifiableList(sortedRepr); // store the permutation of [0,1,...,n-1] list for toString() and isSame() methods baseSeqPermutation = Collections.unmodifiableList( decodeGeneric(baseSequence(getLength()), getRepresentation(), sortedRepresentation) ); } /** * Constructor. * * @param representation array of [0,1] values representing the permutation */ public RandomKey(Double[] representation) { this(Arrays.asList(representation)); } /** * {@inheritDoc} */ public List<T> decode(List<T> sequence) { return decodeGeneric(sequence, getRepresentation(), sortedRepresentation); } /** * Decodes a permutation represented by <code>representation</code> and * returns a (generic) list with the permuted values. * * @param <S> generic type of the sequence values * @param sequence the unpermuted sequence * @param representation representation of the permutation ([0,1] vector) * @param sortedRepr sorted <code>representation</code> * @return list with the sequence values permuted according to the representation */ private static <S> List<S> decodeGeneric(List<S> sequence, List<Double> representation, List<Double> sortedRepr) { int l = sequence.size(); if (representation.size() != l) { throw new IllegalArgumentException(String.format("Length of sequence for decoding (%s) has to be equal to the length of the RandomKey (%s)", l, representation.size())); } if (representation.size() != sortedRepr.size()) { throw new IllegalArgumentException(String.format("Representation and sortedRepr must have same sizes, %d != %d", representation.size(), sortedRepr.size())); } List<Double> reprCopy = new ArrayList<Double> (representation);// do not modify the orig. representation // now find the indices in the original repr and use them for permuting List<S> res = new ArrayList<S> (l); for (int i=0; i<l; i++) { int index = reprCopy.indexOf(sortedRepr.get(i)); res.add(sequence.get(index)); reprCopy.set(index, null); } return res; } /** * Returns <code>true</code> iff <code>another</code> is a RandomKey and * encodes the same permutation. * * @param another chromosome to compare * @return true iff chromosomes encode the same permutation */ @Override protected boolean isSame(Chromosome another) { // type check if (! (another instanceof RandomKey<?>)) return false; RandomKey<?> anotherRk = (RandomKey<?>) another; // size check if (getLength() != anotherRk.getLength()) return false; // two different representations can still encode the same permutation // the ordering is what counts List<Integer> thisPerm = this.baseSeqPermutation; List<Integer> anotherPerm = anotherRk.baseSeqPermutation; for (int i=0; i<getLength(); i++) { if (thisPerm.get(i) != anotherPerm.get(i)) return false; } // the permutations are the same return true; } /** * {@inheritDoc} */ @Override protected void checkValidity(java.util.List<Double> chromosomeRepresentation) throws InvalidRepresentationException { for (double val : chromosomeRepresentation) { if (val < 0 || val > 1) { throw new InvalidRepresentationException("Values of representation must be in [0,1] interval"); } } } /** * Generates a representation corresponding to a random permutation of * length l which can be passed to the RandomKey constructor. * * @param l * length of the permutation * @return representation of a random permutation */ public static final List<Double> randomPermutation(int l) { List<Double> repr = new ArrayList<Double>(l); for (int i=0; i<l; i++) { repr.add(GeneticAlgorithm.getRandomGenerator().nextDouble()); } return repr; } /** * Generates a representation corresponding to an identity permutation of * length l which can be passed to the RandomKey constructor. * * @param l * length of the permutation * @return representation of an identity permutation */ public static final List<Double> identityPermutation(int l) { List<Double> repr = new ArrayList<Double>(l); for (int i=0; i<l; i++) { repr.add((double)i/l); } return repr; } /** * Generates a representation of a permutation corresponding to the * <code>data</code> sorted by <code>comparator</code>. The * <code>data</code> is not modified during the process. * * This is useful if you want to inject some permutations to the initial * population. * * @param <S> type of the data * @param data list of data determining the order * @param comparator how the data will be compared * @return list representation of the permutation corresponding to the parameters */ public static <S> List<Double> comparatorPermutation(List<S> data, Comparator<S> comparator) { List<S> sortedData = new ArrayList<S> (data); Collections.sort(sortedData, comparator); return inducedPermutation(data, sortedData); } /** * Generates a representation of a permutation corresponding to a * permutation which yields <code>permutedData</code> when applied to * <code>originalData</code>. * * This method can be viewed as an inverse to {@link #decode(List)}. * * @param <S> type of the data * @param originalData the original, unpermuted data * @param permutedData the data, somehow permuted * @return representation of a permutation corresponding to the permutation <code>originalData -> permutedData</code> * @throws IllegalArgumentException iff the <code>permutedData</code> and <code>originalData</code> contains different data */ public static <S> List<Double> inducedPermutation(List<S> originalData, List<S> permutedData) throws IllegalArgumentException { if (originalData.size() != permutedData.size()) { throw new IllegalArgumentException("originalData and permutedData must have same length"); } int l = originalData.size(); List<S> origDataCopy = new ArrayList<S> (originalData); Double[] res = new Double[l]; for (int i=0; i<l; i++) { int index = origDataCopy.indexOf(permutedData.get(i)); if (index == -1) { throw new IllegalArgumentException("originalData and permutedData must contain the same objects."); } res[index] = (double) i / l; origDataCopy.set(index, null); } return Arrays.asList(res); } /** * {@inheritDoc} */ @Override public String toString() { return String.format("(f=%s pi=(%s))", getFitness(), baseSeqPermutation); } /** * Helper for constructor. Generates a list of natural numbers (0,1,...,l-1). * * @param l length of list to generate * @return list of integers from 0 to l-1 */ private static List<Integer> baseSequence(int l) { List<Integer> baseSequence = new ArrayList<Integer> (l); for (int i=0; i<l; i++) { baseSequence.add(i); } return baseSequence; } }