/* * This file is part of ADDIS (Aggregate Data Drug Information System). * ADDIS is distributed from http://drugis.org/. * Copyright © 2009 Gert van Valkenhoef, Tommi Tervonen. * Copyright © 2010 Gert van Valkenhoef, Tommi Tervonen, Tijs Zwinkels, * Maarten Jacobs, Hanno Koeslag, Florin Schimbinschi, Ahmad Kamal, Daniel * Reid. * Copyright © 2011 Gert van Valkenhoef, Ahmad Kamal, Daniel Reid, Florin * Schimbinschi. * Copyright © 2012 Gert van Valkenhoef, Daniel Reid, Joël Kuiper, Wouter * Reckman. * Copyright © 2013 Gert van Valkenhoef, Joël Kuiper. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ package org.drugis.addis.mcmcmodel; import gov.lanl.yadas.ArgumentMaker; import gov.lanl.yadas.BasicMCMCBond; import gov.lanl.yadas.Binomial; import gov.lanl.yadas.ConstantArgument; import gov.lanl.yadas.MCMCParameter; import java.util.List; import org.drugis.addis.entities.RateMeasurement; import org.drugis.common.stat.DichotomousDescriptives; import org.drugis.common.stat.EstimateWithPrecision; public class BaselineOddsModel extends AbstractBaselineModel<RateMeasurement> { private DichotomousDescriptives d_dichotomousDescriptives = new DichotomousDescriptives(true); public BaselineOddsModel(List<RateMeasurement> measurements) { super(measurements); } @Override protected void createDataBond(MCMCParameter studyMu) { new BasicMCMCBond(new MCMCParameter[] {studyMu}, new ArgumentMaker[] { new ConstantArgument(rateArray()), new ConstantArgument(sampleSizeArray()), new InverseLogitArgumentMaker(0) }, new Binomial()); } @Override protected EstimateWithPrecision estimateTreatmentEffect(int i) { final RateMeasurement m = d_measurements.get(i); double mean = d_dichotomousDescriptives.logOdds(m.getRate(), m.getSampleSize()); double se = getError(i); return new EstimateWithPrecision(mean, se); } @Override protected double getError(int i) { return getError(d_measurements.get(i)); } private double getError(final RateMeasurement m) { return d_dichotomousDescriptives.logOddsError(m.getRate(), m.getSampleSize()); } private double[] sampleSizeArray() { double[] arr = new double[d_measurements.size()]; for (int i = 0; i < arr.length; ++i) { arr[i] = d_measurements.get(i).getSampleSize(); } return arr; } private double[] rateArray() { double[] arr = new double[d_measurements.size()]; for (int i = 0; i < arr.length; ++i) { arr[i] = d_measurements.get(i).getRate(); } return arr; } }