/* * This file is part of ADDIS (Aggregate Data Drug Information System). * ADDIS is distributed from http://drugis.org/. * Copyright © 2009 Gert van Valkenhoef, Tommi Tervonen. * Copyright © 2010 Gert van Valkenhoef, Tommi Tervonen, Tijs Zwinkels, * Maarten Jacobs, Hanno Koeslag, Florin Schimbinschi, Ahmad Kamal, Daniel * Reid. * Copyright © 2011 Gert van Valkenhoef, Ahmad Kamal, Daniel Reid, Florin * Schimbinschi. * Copyright © 2012 Gert van Valkenhoef, Daniel Reid, Joël Kuiper, Wouter * Reckman. * Copyright © 2013 Gert van Valkenhoef, Joël Kuiper. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ package org.drugis.addis.entities.relativeeffect; import java.util.ArrayList; import java.util.List; import org.drugis.addis.entities.Measurement; import org.drugis.common.stat.EstimateWithPrecision; import org.drugis.mtc.util.DerSimonianLairdPooling; public class RandomEffectsRelativeEffect extends AbstractRelativeEffect<Measurement> implements RandomEffectMetaAnalysisRelativeEffect<Measurement> { private abstract static class DerSimonianLairdComputations { private DerSimonianLairdPooling d_nested; public DerSimonianLairdComputations(List<Distribution> distributions) { if (distributions.isEmpty()) throw new IllegalStateException("Cannot calculate RandomEffectMetaAnalysis without any relative effects."); d_nested = new DerSimonianLairdPooling(getMu(distributions), getSigma(distributions)); } public double getHeterogeneity() { return d_nested.getHeterogeneity(); } public double getHeterogeneityI2() { return d_nested.getHeterogeneityTestStatistic() * 100; } public Distribution getDistribution() { return getPooledDistribution(d_nested.getPooled()); } protected abstract Distribution getPooledDistribution(EstimateWithPrecision estimate); protected abstract double getMu(Distribution d); protected abstract double getSigma(Distribution d); private double[] getSigma(List<Distribution> distributions) { double[] val = new double[distributions.size()]; for (int i = 0; i < distributions.size(); ++i) { val[i] = getSigma(distributions.get(i)); } return val; } private double[] getMu(List<Distribution> distributions) { double[] val = new double[distributions.size()]; for (int i = 0; i < distributions.size(); ++i) { val[i] = getMu(distributions.get(i)); } return val; } } private class LinDSLComputations extends DerSimonianLairdComputations { public LinDSLComputations(List<Distribution> distributions) { super(distributions); } @Override public double getMu(Distribution d) { return ((TransformedStudentTBase)d).getMu(); } @Override public double getSigma(Distribution d) { return ((TransformedStudentTBase)d).getSigma(); } @Override protected Distribution getPooledDistribution(EstimateWithPrecision estimate) { return new Gaussian(estimate.getPointEstimate(), estimate.getStandardError()); } } private class LogDSLComputations extends DerSimonianLairdComputations { public LogDSLComputations(List<Distribution> distributions) { super(distributions); } @Override public double getMu(Distribution d) { return ((TransformedLogStudentT)d).getMu(); } @Override public double getSigma(Distribution d) { return ((TransformedLogStudentT)d).getSigma(); } @Override protected Distribution getPooledDistribution(EstimateWithPrecision estimate) { return new LogGaussian(estimate.getPointEstimate(), estimate.getStandardError()); } } private DerSimonianLairdComputations d_results; private AxisType d_axisType; public RandomEffectsRelativeEffect(List<RelativeEffect<? extends Measurement>> componentEffects) { d_axisType = componentEffects.get(0).getAxisType(); switch (d_axisType) { case LINEAR: d_results = new LinDSLComputations(getDistributions(componentEffects)); break; case LOGARITHMIC: d_results = new LogDSLComputations(getDistributions(componentEffects)); break; default: throw new IllegalStateException("Unknown AxisType " + d_axisType); } } public Distribution getDistribution() { return d_results.getDistribution(); } public boolean isDefined() { return true; } public double getHeterogeneity() { return d_results.getHeterogeneity(); } public double getHeterogeneityI2() { return d_results.getHeterogeneityI2(); } @Override public String toString() { return this.getClass().getSimpleName() + "(" + getConfidenceInterval().toString() +")"; } public String getName() { return "Random Effects Relative Effect"; } public static List<Distribution> getDistributions(List<RelativeEffect<?>> res) { List<Distribution> dists = new ArrayList<Distribution>(); for (RelativeEffect<?> re: res) { dists.add(re.getDistribution()); } return dists; } public static List<Distribution> getCorrectedDistributions(List<RelativeEffect<?>> res) { List<Distribution> dists = new ArrayList<Distribution>(); for (RelativeEffect<?> re: res) { if(re instanceof BasicRiskDifference) { dists.add(((BasicRiskDifference) re).getCorrected().getDistribution()); } else if(re instanceof BasicOddsRatio) { dists.add(((BasicOddsRatio) re).getCorrected().getDistribution()); } else if(re instanceof BasicRiskRatio) { dists.add(((BasicRiskRatio) re).getCorrected().getDistribution()); } else { dists.add(re.getDistribution()); } } return dists; } @Override public AxisType getAxisType() { return d_axisType; } }