/*
* This file is part of ADDIS (Aggregate Data Drug Information System).
* ADDIS is distributed from http://drugis.org/.
* Copyright © 2009 Gert van Valkenhoef, Tommi Tervonen.
* Copyright © 2010 Gert van Valkenhoef, Tommi Tervonen, Tijs Zwinkels,
* Maarten Jacobs, Hanno Koeslag, Florin Schimbinschi, Ahmad Kamal, Daniel
* Reid.
* Copyright © 2011 Gert van Valkenhoef, Ahmad Kamal, Daniel Reid, Florin
* Schimbinschi.
* Copyright © 2012 Gert van Valkenhoef, Daniel Reid, Joël Kuiper, Wouter
* Reckman.
* Copyright © 2013 Gert van Valkenhoef, Joël Kuiper.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
package org.drugis.addis.entities.relativeeffect;
import java.util.ArrayList;
import java.util.List;
import org.drugis.addis.entities.Measurement;
import org.drugis.common.stat.EstimateWithPrecision;
import org.drugis.mtc.util.DerSimonianLairdPooling;
public class RandomEffectsRelativeEffect extends AbstractRelativeEffect<Measurement> implements RandomEffectMetaAnalysisRelativeEffect<Measurement> {
private abstract static class DerSimonianLairdComputations {
private DerSimonianLairdPooling d_nested;
public DerSimonianLairdComputations(List<Distribution> distributions) {
if (distributions.isEmpty())
throw new IllegalStateException("Cannot calculate RandomEffectMetaAnalysis without any relative effects.");
d_nested = new DerSimonianLairdPooling(getMu(distributions), getSigma(distributions));
}
public double getHeterogeneity() {
return d_nested.getHeterogeneity();
}
public double getHeterogeneityI2() {
return d_nested.getHeterogeneityTestStatistic() * 100;
}
public Distribution getDistribution() {
return getPooledDistribution(d_nested.getPooled());
}
protected abstract Distribution getPooledDistribution(EstimateWithPrecision estimate);
protected abstract double getMu(Distribution d);
protected abstract double getSigma(Distribution d);
private double[] getSigma(List<Distribution> distributions) {
double[] val = new double[distributions.size()];
for (int i = 0; i < distributions.size(); ++i) {
val[i] = getSigma(distributions.get(i));
}
return val;
}
private double[] getMu(List<Distribution> distributions) {
double[] val = new double[distributions.size()];
for (int i = 0; i < distributions.size(); ++i) {
val[i] = getMu(distributions.get(i));
}
return val;
}
}
private class LinDSLComputations extends DerSimonianLairdComputations {
public LinDSLComputations(List<Distribution> distributions) {
super(distributions);
}
@Override
public double getMu(Distribution d) {
return ((TransformedStudentTBase)d).getMu();
}
@Override
public double getSigma(Distribution d) {
return ((TransformedStudentTBase)d).getSigma();
}
@Override
protected Distribution getPooledDistribution(EstimateWithPrecision estimate) {
return new Gaussian(estimate.getPointEstimate(), estimate.getStandardError());
}
}
private class LogDSLComputations extends DerSimonianLairdComputations {
public LogDSLComputations(List<Distribution> distributions) {
super(distributions);
}
@Override
public double getMu(Distribution d) {
return ((TransformedLogStudentT)d).getMu();
}
@Override
public double getSigma(Distribution d) {
return ((TransformedLogStudentT)d).getSigma();
}
@Override
protected Distribution getPooledDistribution(EstimateWithPrecision estimate) {
return new LogGaussian(estimate.getPointEstimate(), estimate.getStandardError());
}
}
private DerSimonianLairdComputations d_results;
private AxisType d_axisType;
public RandomEffectsRelativeEffect(List<RelativeEffect<? extends Measurement>> componentEffects) {
d_axisType = componentEffects.get(0).getAxisType();
switch (d_axisType) {
case LINEAR:
d_results = new LinDSLComputations(getDistributions(componentEffects));
break;
case LOGARITHMIC:
d_results = new LogDSLComputations(getDistributions(componentEffects));
break;
default:
throw new IllegalStateException("Unknown AxisType " + d_axisType);
}
}
public Distribution getDistribution() {
return d_results.getDistribution();
}
public boolean isDefined() {
return true;
}
public double getHeterogeneity() {
return d_results.getHeterogeneity();
}
public double getHeterogeneityI2() {
return d_results.getHeterogeneityI2();
}
@Override
public String toString() {
return this.getClass().getSimpleName() + "(" + getConfidenceInterval().toString() +")";
}
public String getName() {
return "Random Effects Relative Effect";
}
public static List<Distribution> getDistributions(List<RelativeEffect<?>> res) {
List<Distribution> dists = new ArrayList<Distribution>();
for (RelativeEffect<?> re: res) {
dists.add(re.getDistribution());
}
return dists;
}
public static List<Distribution> getCorrectedDistributions(List<RelativeEffect<?>> res) {
List<Distribution> dists = new ArrayList<Distribution>();
for (RelativeEffect<?> re: res) {
if(re instanceof BasicRiskDifference) {
dists.add(((BasicRiskDifference) re).getCorrected().getDistribution());
} else if(re instanceof BasicOddsRatio) {
dists.add(((BasicOddsRatio) re).getCorrected().getDistribution());
} else if(re instanceof BasicRiskRatio) {
dists.add(((BasicRiskRatio) re).getCorrected().getDistribution());
} else {
dists.add(re.getDistribution());
}
}
return dists;
}
@Override
public AxisType getAxisType() {
return d_axisType;
}
}