/* * Copyright (C) 2011-2012 Dr. John Lindsay <jlindsay@uoguelph.ca> * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ package plugins; import java.text.DecimalFormat; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Date; import java.util.PriorityQueue; import whitebox.geospatialfiles.ShapeFile; import whitebox.geospatialfiles.WhiteboxRaster; import whitebox.geospatialfiles.WhiteboxRasterBase; import whitebox.geospatialfiles.WhiteboxRasterBase.DataType; import whitebox.geospatialfiles.shapefile.attributes.DBFField; import whitebox.geospatialfiles.shapefile.attributes.AttributeTable; import whitebox.geospatialfiles.shapefile.PolygonM; import whitebox.geospatialfiles.shapefile.PolygonZ; import whitebox.geospatialfiles.shapefile.ShapeFileRecord; import whitebox.geospatialfiles.shapefile.ShapeType; import whitebox.interfaces.WhiteboxPlugin; import whitebox.interfaces.WhiteboxPluginHost; import whitebox.structures.BoundingBox; import whitebox.structures.RowPriorityGridCell; /** * This tool can be used to convert a vector polygons file (shapefile) into a raster grid. * * @author Dr. John Lindsay email: jlindsay@uoguelph.ca. */ public class VectorPolygonsToRaster implements WhiteboxPlugin { private WhiteboxPluginHost myHost = null; private String[] args; /** * Used to retrieve the plugin tool's name. This is a short, unique name * containing no spaces. * * @return String containing plugin name. */ @Override public String getName() { return "VectorPolygonsToRaster"; } /** * Used to retrieve the plugin tool's descriptive name. This can be a longer * name (containing spaces) and is used in the interface to list the tool. * * @return String containing the plugin descriptive name. */ @Override public String getDescriptiveName() { return "Vector Polygons To Raster"; } /** * Used to retrieve a short description of what the plugin tool does. * * @return String containing the plugin's description. */ @Override public String getToolDescription() { return "Converts a vector containing polygons into a raster."; } /** * Used to identify which toolboxes this plugin tool should be listed in. * * @return Array of Strings. */ @Override public String[] getToolbox() { String[] ret = {"RasterVectorConversions", "RasterCreation"}; return ret; } /** * Sets the WhiteboxPluginHost to which the plugin tool is tied. This is the * class that the plugin will send all feedback messages, progress updates, * and return objects. * * @param host The WhiteboxPluginHost that called the plugin tool. */ @Override public void setPluginHost(WhiteboxPluginHost host) { myHost = host; } /** * Used to communicate feedback pop-up messages between a plugin tool and * the main Whitebox user-interface. * * @param feedback String containing the text to display. */ private void showFeedback(String message) { if (myHost != null) { myHost.showFeedback(message); } else { System.out.println(message); } } /** * Used to communicate a return object from a plugin tool to the main * Whitebox user-interface. * * @return Object, such as an output WhiteboxRaster. */ private void returnData(Object ret) { if (myHost != null) { myHost.returnData(ret); } } private int previousProgress = 0; private String previousProgressLabel = ""; /** * Used to communicate a progress update between a plugin tool and the main * Whitebox user interface. * * @param progressLabel A String to use for the progress label. * @param progress Float containing the progress value (between 0 and 100). */ private void updateProgress(String progressLabel, int progress) { if (myHost != null && ((progress != previousProgress) || (!progressLabel.equals(previousProgressLabel)))) { myHost.updateProgress(progressLabel, progress); } previousProgress = progress; previousProgressLabel = progressLabel; } /** * Used to communicate a progress update between a plugin tool and the main * Whitebox user interface. * * @param progress Float containing the progress value (between 0 and 100). */ private void updateProgress(int progress) { if (myHost != null && progress != previousProgress) { myHost.updateProgress(progress); } previousProgress = progress; } /** * Sets the arguments (parameters) used by the plugin. * * @param args An array of string arguments. */ @Override public void setArgs(String[] args) { this.args = args.clone(); } private boolean cancelOp = false; /** * Used to communicate a cancel operation from the Whitebox GUI. * * @param cancel Set to true if the plugin should be canceled. */ @Override public void setCancelOp(boolean cancel) { cancelOp = cancel; } private void cancelOperation() { showFeedback("Operation cancelled."); updateProgress("Progress: ", 0); } private boolean amIActive = false; /** * Used by the Whitebox GUI to tell if this plugin is still running. * * @return a boolean describing whether or not the plugin is actively being * used. */ @Override public boolean isActive() { return amIActive; } /** * Used to execute this plugin tool. */ @Override public void run() { amIActive = true; String inputFile; String outputHeader; String assignmentFieldName; int assignmentFieldNum = -1; String baseFileHeader = "not specified"; double backgroundValue = 0; int row, col; double rowYCoord, value, z; int progress = 0; double cellSize = -1.0; int rows, topRow, bottomRow; int cols; double noData = -32768.0; double east; double west; double north; double south; DataType dataType = WhiteboxRasterBase.DataType.INTEGER; Object[] data; Object[][] allRecords = null; BoundingBox box; double[][] geometry; int numPoints, numParts, i, part, numEdges; int stCol, endCol; int startingPointInPart, endingPointInPart; double x1, y1, x2, y2, xPrime; boolean foundIntersection; ArrayList<Integer> edgeList = new ArrayList<>(); boolean useRecID = false; DecimalFormat df = new DecimalFormat("###,###,###,###"); double smallNumber = -999999.0; // this value will be used // to ensure that when there is a hole in a polygon, the cell containing // the background value will be retreived from the priority queue second. if (args.length <= 0) { showFeedback("Plugin parameters have not been set."); return; } inputFile = args[0]; outputHeader = args[1]; assignmentFieldName = args[2]; if (args[3].toLowerCase().contains("nodata")) { backgroundValue = noData; } else { backgroundValue = Double.parseDouble(args[3]); } if (!args[4].toLowerCase().contains("not specified")) { cellSize = Double.parseDouble(args[4]); } baseFileHeader = args[5]; // check to see that the inputHeader and outputHeader are not null. if ((inputFile == null) || (outputHeader == null)) { showFeedback("One or more of the input parameters have not been set properly."); return; } try { // initialize the shapefile input ShapeFile input = new ShapeFile(inputFile); int numRecs = input.getNumberOfRecords(); if (input.getShapeType().getBaseType() != ShapeType.POLYGON) { showFeedback("The input shapefile must be of a 'polygon' data type."); return; } // what type of data is contained in assignmentFieldName? AttributeTable reader = input.getAttributeTable(); //new DBFReader(input.getDatabaseFile()); int numberOfFields = reader.getFieldCount(); for (i = 0; i < numberOfFields; i++) { DBFField field = reader.getField(i); if (field.getName().equals(assignmentFieldName)) { assignmentFieldNum = i; if (field.getDataType() == DBFField.DBFDataType.NUMERIC || field.getDataType() == DBFField.DBFDataType.FLOAT) { if (field.getDecimalCount() == 0) { dataType = WhiteboxRasterBase.DataType.INTEGER; } else { dataType = WhiteboxRasterBase.DataType.FLOAT; } } else { useRecID = true; } } } if (assignmentFieldNum < 0) { useRecID = true; } // initialize the output raster WhiteboxRaster output; if ((cellSize > 0) || ((cellSize < 0) & (baseFileHeader.toLowerCase().contains("not specified")))) { if ((cellSize < 0) & (baseFileHeader.toLowerCase().contains("not specified"))) { cellSize = Math.min((input.getyMax() - input.getyMin()) / 500.0, (input.getxMax() - input.getxMin()) / 500.0); } north = input.getyMax() + cellSize / 2.0; south = input.getyMin() - cellSize / 2.0; east = input.getxMax() + cellSize / 2.0; west = input.getxMin() - cellSize / 2.0; rows = (int) (Math.ceil((north - south) / cellSize)); cols = (int) (Math.ceil((east - west) / cellSize)); // update west and south east = west + cols * cellSize; south = north - rows * cellSize; output = new WhiteboxRaster(outputHeader, north, south, east, west, rows, cols, WhiteboxRasterBase.DataScale.CONTINUOUS, dataType, backgroundValue, noData); } else { output = new WhiteboxRaster(outputHeader, "rw", baseFileHeader, dataType, backgroundValue); output.setNoDataValue(noData); } // first sort the records based on their maxY coordinate. This will // help reduce the amount of disc IO for larger rasters. ArrayList<RecordInfo> myList = new ArrayList<>(); for (ShapeFileRecord record : input.records) { i = record.getRecordNumber(); box = getBoundingBoxFromShapefileRecord(record); myList.add(new RecordInfo(box.getMaxY(), i)); } Collections.sort(myList); if (!useRecID) { allRecords = new Object[numRecs][numberOfFields]; int a = 0; while ((data = reader.nextRecord()) != null) { System.arraycopy(data, 0, allRecords[a], 0, numberOfFields); a++; } } long heapSize = Runtime.getRuntime().totalMemory(); int flushSize = (int) (heapSize / 32); int j, numCellsToWrite; PriorityQueue<RowPriorityGridCell> pq = new PriorityQueue<>(flushSize); RowPriorityGridCell cell; int numRecords = input.getNumberOfRecords(); int count = 0; int progressCount = (int) (numRecords / 100.0); if (progressCount <= 0) { progressCount = 1; } ShapeFileRecord record; for (RecordInfo ri : myList) { record = input.getRecord(ri.recNumber - 1); if (!useRecID) { value = Double.valueOf(allRecords[record.getRecordNumber() - 1][assignmentFieldNum].toString()); } else { value = record.getRecordNumber(); } geometry = getXYFromShapefileRecord(record); numPoints = geometry.length; numParts = partData.length; // first do the non-holes. for (part = 0; part < numParts; part++) { if (!partHoleData[part]) { box = new BoundingBox(); startingPointInPart = partData[part]; if (part < numParts - 1) { endingPointInPart = partData[part + 1]; } else { endingPointInPart = numPoints; } for (i = startingPointInPart; i < endingPointInPart; i++) { if (geometry[i][1] < box.getMinY()) { box.setMinY(geometry[i][1]); } if (geometry[i][1] > box.getMaxY()) { box.setMaxY(geometry[i][1]); } } topRow = output.getRowFromYCoordinate(box.getMaxY()); bottomRow = output.getRowFromYCoordinate(box.getMinY()); for (row = topRow; row <= bottomRow; row++) { edgeList.clear(); foundIntersection = false; rowYCoord = output.getYCoordinateFromRow(row); // find the x-coordinates of each of the edges that // intersect this row's y coordinate for (i = startingPointInPart; i < endingPointInPart - 1; i++) { if (isBetween(rowYCoord, geometry[i][1], geometry[i + 1][1])) { y1 = geometry[i][1]; y2 = geometry[i + 1][1]; if (y2 != y1) { x1 = geometry[i][0]; x2 = geometry[i + 1][0]; // calculate the intersection point xPrime = (x1 + (rowYCoord - y1) / (y2 - y1) * (x2 - x1)); edgeList.add(output.getColumnFromXCoordinate(xPrime)); foundIntersection = true; } } } if (foundIntersection) { numEdges = edgeList.size(); if (numEdges == 2) { stCol = Math.min(edgeList.get(0), edgeList.get(1)); endCol = Math.max(edgeList.get(0), edgeList.get(1)); for (col = stCol; col <= endCol; col++) { //output.setValue(row, col, value); pq.add(new RowPriorityGridCell(row, col, value)); } } else { //sort the edges. Integer[] edgeArray = new Integer[numEdges]; edgeList.toArray(edgeArray); Arrays.sort(edgeArray); boolean fillFlag = true; for (i = 0; i < numEdges - 1; i++) { stCol = edgeArray[i]; endCol = edgeArray[i + 1]; if (fillFlag) { for (col = stCol; col <= endCol; col++) { //output.setValue(row, col, value); pq.add(new RowPriorityGridCell(row, col, value)); } } fillFlag = !fillFlag; } } } } } } // then do the holes. for (part = 0; part < numParts; part++) { if (partHoleData[part]) { box = new BoundingBox(); startingPointInPart = partData[part]; if (part < numParts - 1) { endingPointInPart = partData[part + 1]; } else { endingPointInPart = numPoints; } for (i = startingPointInPart; i < endingPointInPart; i++) { if (geometry[i][1] < box.getMinY()) { box.setMinY(geometry[i][1]); } if (geometry[i][1] > box.getMaxY()) { box.setMaxY(geometry[i][1]); } } topRow = output.getRowFromYCoordinate(box.getMaxY()); bottomRow = output.getRowFromYCoordinate(box.getMinY()); for (row = topRow; row <= bottomRow; row++) { edgeList.clear(); foundIntersection = false; rowYCoord = output.getYCoordinateFromRow(row); // find the x-coordinates of each of the edges that // intersect this row's y coordinate for (i = startingPointInPart; i < endingPointInPart - 1; i++) { if (isBetween(rowYCoord, geometry[i][1], geometry[i + 1][1])) { y1 = geometry[i][1]; y2 = geometry[i + 1][1]; if (y2 != y1) { x1 = geometry[i][0]; x2 = geometry[i + 1][0]; // calculate the intersection point xPrime = (x1 + (rowYCoord - y1) / (y2 - y1) * (x2 - x1)); edgeList.add(output.getColumnFromXCoordinate(xPrime)); foundIntersection = true; } } } if (foundIntersection) { numEdges = edgeList.size(); if (numEdges == 2) { stCol = Math.min(edgeList.get(0), edgeList.get(1)); endCol = Math.max(edgeList.get(0), edgeList.get(1)); for (col = stCol; col <= endCol; col++) { //output.setValue(row, col, backgroundValue); pq.add(new RowPriorityGridCell(row, col, smallNumber)); } } else { //sort the edges. Integer[] edgeArray = new Integer[numEdges]; edgeList.toArray(edgeArray); Arrays.sort(edgeArray); boolean fillFlag = true; for (i = 0; i < numEdges - 1; i++) { stCol = edgeArray[i]; endCol = edgeArray[i + 1]; if (fillFlag) { for (col = stCol; col <= endCol; col++) { z = output.getValue(row, col); if (z == value) { // this line should allow // other polygons to still be visible in the // donut holes of overlying polygons. //output.setValue(row, col, backgroundValue); pq.add(new RowPriorityGridCell(row, col, smallNumber)); } } } fillFlag = !fillFlag; } } } } } } if (pq.size() >= flushSize) { j = 0; numCellsToWrite = pq.size(); do { cell = pq.poll(); if (cell.z == smallNumber) { output.setValue(cell.row, cell.col, backgroundValue); } else { output.setValue(cell.row, cell.col, cell.z); } j++; if (j % 1000 == 0) { if (cancelOp) { cancelOperation(); return; } updateProgress("Writing to Output (" + df.format(j) + " of " + df.format(numCellsToWrite) + "):", (int) (j * 100.0 / numCellsToWrite)); } } while (pq.size() > 0); } if (cancelOp) { cancelOperation(); return; } count++; if (count % progressCount == 0) { progress++; updateProgress(progress); } } j = 0; numCellsToWrite = pq.size(); if (numCellsToWrite > 0) { do { cell = pq.poll(); if (cell.z == smallNumber) { output.setValue(cell.row, cell.col, backgroundValue); } else { output.setValue(cell.row, cell.col, cell.z); } j++; if (j % 1000 == 0) { if (cancelOp) { cancelOperation(); return; } updateProgress("Writing to Output (" + df.format(j) + " of " + df.format(numCellsToWrite) + "):", (int) (j * 100.0 / numCellsToWrite)); } } while (pq.size() > 0); } output.addMetadataEntry("Created by the " + getDescriptiveName() + " tool."); output.addMetadataEntry("Created on " + new Date()); output.flush(); output.close(); // returning a header file string displays the image. returnData(outputHeader); } catch (OutOfMemoryError oe) { myHost.showFeedback("An out-of-memory error has occurred during operation."); } catch (Exception e) { myHost.showFeedback("An error has occurred during operation. See log file for details."); myHost.logException("Error in " + getDescriptiveName(), e); } finally { updateProgress("Progress: ", 0); // tells the main application that this process is completed. amIActive = false; myHost.pluginComplete(); } } boolean[] partHoleData; int[] partData; private double[][] getXYFromShapefileRecord(ShapeFileRecord record) { double[][] ret; ShapeType shapeType = record.getShapeType(); switch (shapeType) { case POLYGON: whitebox.geospatialfiles.shapefile.Polygon recPolygon = (whitebox.geospatialfiles.shapefile.Polygon) (record.getGeometry()); ret = recPolygon.getPoints(); partData = recPolygon.getParts(); partHoleData = recPolygon.getPartHoleData(); break; case POLYGONZ: PolygonZ recPolygonZ = (PolygonZ) (record.getGeometry()); ret = recPolygonZ.getPoints(); partData = recPolygonZ.getParts(); partHoleData = recPolygonZ.getPartHoleData(); break; case POLYGONM: PolygonM recPolygonM = (PolygonM) (record.getGeometry()); ret = recPolygonM.getPoints(); partData = recPolygonM.getParts(); partHoleData = recPolygonM.getPartHoleData(); break; default: ret = new double[1][2]; ret[1][0] = -1; ret[1][1] = -1; break; } return ret; } private BoundingBox getBoundingBoxFromShapefileRecord(ShapeFileRecord record) { BoundingBox ret; ShapeType shapeType = record.getShapeType(); switch (shapeType) { case POLYGON: whitebox.geospatialfiles.shapefile.Polygon recPolygon = (whitebox.geospatialfiles.shapefile.Polygon) (record.getGeometry()); ret = recPolygon.getBox(); break; case POLYGONZ: PolygonZ recPolygonZ = (PolygonZ) (record.getGeometry()); ret = recPolygonZ.getBox(); break; case POLYGONM: PolygonM recPolygonM = (PolygonM) (record.getGeometry()); ret = recPolygonM.getBox(); break; default: ret = new BoundingBox(Double.NaN, Double.NaN, Double.NaN, Double.NaN); break; } return ret; } private class RecordInfo implements Comparable<RecordInfo> { public double maxY; public int recNumber; public RecordInfo(double maxY, int recNumber) { this.maxY = maxY; this.recNumber = recNumber; } @Override public int compareTo(RecordInfo other) { final int BEFORE = -1; final int EQUAL = 0; final int AFTER = 1; if (this.maxY < other.maxY) { return BEFORE; } else if (this.maxY > other.maxY) { return AFTER; } if (this.recNumber < other.recNumber) { return BEFORE; } else if (this.recNumber > other.recNumber) { return AFTER; } return EQUAL; } } // Return true if val is between theshold1 and theshold2. private static boolean isBetween(double val, double threshold1, double threshold2) { if (val == threshold1 || val == threshold2) { return true; } return threshold2 > threshold1 ? val > threshold1 && val < threshold2 : val > threshold2 && val < threshold1; } // // This method is only used during testing. // public static void main(String[] args) { // args = new String[6]; // //// args[0] = "/Users/johnlindsay/Documents/Data/ShapeFiles/Water_Body_rmow.shp"; //// args[1] = "/Users/johnlindsay/Documents/Data/ShapeFiles/Water_Body_rmow.dep"; //// args[2] = "PRER"; //// //args[3] = "not specified"; //// args[3] = "nodata"; //// args[4] = "10"; //// args[5] = "not specified"; // // args[0] = "/Users/johnlindsay/Documents/Data/ShapeFiles/rondeau lakes.shp"; // args[1] = "/Users/johnlindsay/Documents/Data/ShapeFiles/rondeau lakes.dep"; // args[2] = "ACCURACY"; // //args[3] = "not specified"; // args[3] = "nodata"; // args[4] = "5"; // args[5] = "not specified"; // //// args[0] = "/Users/johnlindsay/Documents/Data/ShapeFiles/someLakes.shp"; //// args[1] = "/Users/johnlindsay/Documents/Data/ShapeFiles/someLakes.dep"; //// args[2] = "PROVIDER"; //// //args[3] = "not specified"; //// args[3] = "nodata"; //// args[4] = "10"; //// args[5] = "not specified"; // // VectorPolygonsToRaster vptr = new VectorPolygonsToRaster(); // vptr.setArgs(args); // vptr.run(); // } }