/* * Copyright (C) 2011-2013 Dr. John Lindsay <jlindsay@uoguelph.ca> * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ package plugins; import java.util.ArrayList; import java.util.List; import whitebox.geospatialfiles.ShapeFile; import whitebox.geospatialfiles.shapefile.*; import whitebox.geospatialfiles.shapefile.attributes.DBFField; import whitebox.interfaces.WhiteboxPlugin; import whitebox.interfaces.WhiteboxPluginHost; import whitebox.structures.KdTree; import whitebox.utilities.AxialData; /** * The chain of polygons pattern is a characteristic pattern in which elongated and aligned polygons are arranged end-to-end. * * @author Dr. John Lindsay email: jlindsay@uoguelph.ca */ public class FindPolygonChains implements WhiteboxPlugin { private WhiteboxPluginHost myHost = null; private String[] args; /** * Used to retrieve the plugin tool's name. This is a short, unique name * containing no spaces. * * @return String containing plugin name. */ @Override public String getName() { return "FindPolygonChains"; } /** * Used to retrieve the plugin tool's descriptive name. This can be a longer * name (containing spaces) and is used in the interface to list the tool. * * @return String containing the plugin descriptive name. */ @Override public String getDescriptiveName() { return "Find Polygon Chains"; } /** * Used to retrieve a short description of what the plugin tool does. * * @return String containing the plugin's description. */ @Override public String getToolDescription() { return "Finds groups of polygons arranged end-to-end."; } /** * Used to identify which toolboxes this plugin tool should be listed in. * * @return Array of Strings. */ @Override public String[] getToolbox() { String[] ret = {"VectorTools"}; return ret; } /** * Sets the WhiteboxPluginHost to which the plugin tool is tied. This is the * class that the plugin will send all feedback messages, progress updates, * and return objects. * * @param host The WhiteboxPluginHost that called the plugin tool. */ @Override public void setPluginHost(WhiteboxPluginHost host) { myHost = host; } /** * Used to communicate feedback pop-up messages between a plugin tool and * the main Whitebox user-interface. * * @param feedback String containing the text to display. */ private void showFeedback(String message) { if (myHost != null) { myHost.showFeedback(message); } else { System.out.println(message); } } /** * Used to communicate a return object from a plugin tool to the main * Whitebox user-interface. * * @return Object, such as an output WhiteboxRaster. */ private void returnData(Object ret) { if (myHost != null) { myHost.returnData(ret); } } private int previousProgress = 0; private String previousProgressLabel = ""; /** * Used to communicate a progress update between a plugin tool and the main * Whitebox user interface. * * @param progressLabel A String to use for the progress label. * @param progress Float containing the progress value (between 0 and 100). */ private void updateProgress(String progressLabel, int progress) { if (myHost != null && ((progress != previousProgress) || (!progressLabel.equals(previousProgressLabel)))) { myHost.updateProgress(progressLabel, progress); } else { System.out.println("Progress: " + progress + "%"); } previousProgress = progress; previousProgressLabel = progressLabel; } /** * Used to communicate a progress update between a plugin tool and the main * Whitebox user interface. * * @param progress Float containing the progress value (between 0 and 100). */ private void updateProgress(int progress) { if (myHost != null && progress != previousProgress) { myHost.updateProgress(progress); } else { System.out.println("Progress: " + progress + "%"); } } /** * Sets the arguments (parameters) used by the plugin. * * @param args An array of string arguments. */ @Override public void setArgs(String[] args) { this.args = args.clone(); } private boolean cancelOp = false; /** * Used to communicate a cancel operation from the Whitebox GUI. * * @param cancel Set to true if the plugin should be canceled. */ @Override public void setCancelOp(boolean cancel) { cancelOp = cancel; } private void cancelOperation() { showFeedback("Operation cancelled."); updateProgress("Progress: ", 0); } private boolean amIActive = false; /** * Used by the Whitebox GUI to tell if this plugin is still running. * * @return a boolean describing whether or not the plugin is actively being * used. */ @Override public boolean isActive() { return amIActive; } double[][] pointLocations; int[][] pointAttributes; KdTree<Integer> pointsTree; double neighbourhoodRadius = 1000; /** * Used to execute this plugin tool. */ @Override public void run() { amIActive = true; String inputFile; double x, y, x1, x2, y1, y2; int progress; int oldProgress; int i, n; double[][] vertices = null; int numPolys = 0; ShapeType shapeType; //, outputShapeType = ShapeType.POLYLINE; int[] parts = {0}; double psi = 0; Object[] rowData; double DegreeToRad = Math.PI / 180; double[] axes = new double[2]; double newXAxis = 0; double newYAxis = 0; double longAxis; double shortAxis; final double rightAngle = Math.toRadians(90); double midX, midY; double[] newBoundingBox = new double[4]; double slope; double boxCentreX, boxCentreY; double elongation; double elongationThreshold = 0.25; double dist; boolean outputChainVector = false; PointsList points = new PointsList(); if (args.length <= 0) { showFeedback("Plugin parameters have not been set."); return; } inputFile = args[0]; String outputFile = args[1]; neighbourhoodRadius = Double.parseDouble(args[2]); int minChainLength = Integer.parseInt(args[3]); String outputChainVectorFile = args[4]; if (!outputChainVectorFile.toLowerCase().contains("not specified")) { outputChainVector = true; } // check to see that the inputHeader and outputHeader are not null. if ((inputFile == null)) { showFeedback("One or more of the input parameters have not been set properly."); return; } try { // set up the input shapefile. ShapeFile input = new ShapeFile(inputFile); shapeType = input.getShapeType(); numPolys = input.getNumberOfRecords(); // make sure that the shapetype is a flavour of polygon. if (shapeType.getBaseType() != ShapeType.POLYGON) { showFeedback("This tool only works with shapefiles of a polygon base shape type."); return; } pointLocations = new double[numPolys * 2][2]; pointAttributes = new int[numPolys * 2][4]; int[][] polyAttributes = new int[numPolys][3]; DBFField[] fields = new DBFField[2]; fields[0] = new DBFField(); fields[0].setName("PARENT_ID"); fields[0].setDataType(DBFField.DBFDataType.NUMERIC); fields[0].setFieldLength(10); fields[0].setDecimalCount(0); fields[1] = new DBFField(); fields[1].setName("GROUP_ID"); fields[1].setDataType(DBFField.DBFDataType.NUMERIC); fields[1].setFieldLength(10); fields[1].setDecimalCount(0); ShapeFile output = new ShapeFile(outputFile, shapeType, fields); output.setProjectionStringFromOtherShapefile(input); ShapeFile chainVector = new ShapeFile(); if (outputChainVector) { fields = new DBFField[1]; fields[0] = new DBFField(); fields[0].setName("GROUP_ID"); fields[0].setDataType(DBFField.DBFDataType.NUMERIC); fields[0].setFieldLength(10); fields[0].setDecimalCount(0); chainVector = new ShapeFile(outputChainVectorFile, ShapeType.POLYLINE, fields); } pointsTree = new KdTree.SqrEuclid(2, new Integer(numPolys * 2)); // find the minimum bounding box of each shape and locate points at the top and bottom centres int recordNum; oldProgress = -1; for (ShapeFileRecord record : input.records) { recordNum = record.getRecordNumber(); vertices = record.getGeometry().getPoints(); int numVertices = vertices.length; double east = Double.NEGATIVE_INFINITY; double west = Double.POSITIVE_INFINITY; double north = Double.NEGATIVE_INFINITY; double south = Double.POSITIVE_INFINITY; for (i = 0; i < numVertices; i++) { if (vertices[i][0] > east) { east = vertices[i][0]; } if (vertices[i][0] < west) { west = vertices[i][0]; } if (vertices[i][1] > north) { north = vertices[i][1]; } if (vertices[i][1] < south) { south = vertices[i][1]; } } midX = west + (east - west) / 2.0; midY = south + (north - south) / 2.0; double[][] verticesRotated = new double[numVertices][2]; int[] keyPoints = new int[4]; axes[0] = 9999999; axes[1] = 9999999; slope = 0; boxCentreX = 0; boxCentreY = 0; // Rotate the edge cells in 0.5 degree increments. for (int m = 0; m <= 180; m++) { psi = -m * 0.5 * DegreeToRad; // rotation in clockwise direction // Rotate each edge cell in the array by m degrees. for (n = 0; n < numVertices; n++) { x = vertices[n][0] - midX; y = vertices[n][1] - midY; verticesRotated[n][0] = (x * Math.cos(psi)) - (y * Math.sin(psi)); verticesRotated[n][1] = (x * Math.sin(psi)) + (y * Math.cos(psi)); } int[] currentKeyPoints = new int[4]; // calculate the minimum bounding box in this coordinate // system and see if it is less newBoundingBox[0] = Double.MAX_VALUE; // west newBoundingBox[1] = Double.MIN_VALUE; // east newBoundingBox[2] = Double.MAX_VALUE; // north newBoundingBox[3] = Double.MIN_VALUE; // south for (n = 0; n < numVertices; n++) { x = verticesRotated[n][0]; y = verticesRotated[n][1]; if (x < newBoundingBox[0]) { newBoundingBox[0] = x; currentKeyPoints[0] = n; } if (x > newBoundingBox[1]) { newBoundingBox[1] = x; currentKeyPoints[1] = n; } if (y < newBoundingBox[2]) { newBoundingBox[2] = y; currentKeyPoints[2] = n; } if (y > newBoundingBox[3]) { newBoundingBox[3] = y; currentKeyPoints[3] = n; } } newXAxis = newBoundingBox[1] - newBoundingBox[0]; newYAxis = newBoundingBox[3] - newBoundingBox[2]; if ((newXAxis * newYAxis) < (axes[0] * axes[1])) { // minimize the area of the bounding box. axes[0] = newXAxis; axes[1] = newYAxis; if (axes[0] > axes[1]) { slope = -psi; } else { slope = -(rightAngle + psi); } x = newBoundingBox[0] + newXAxis / 2; y = newBoundingBox[2] + newYAxis / 2; boxCentreX = midX + (x * Math.cos(-psi)) - (y * Math.sin(-psi)); boxCentreY = midY + (x * Math.sin(-psi)) + (y * Math.cos(-psi)); keyPoints = currentKeyPoints.clone(); } } longAxis = Math.max(axes[0], axes[1]); shortAxis = Math.min(axes[0], axes[1]); elongation = 1 - shortAxis / longAxis; slope = AxialData.rationalizeAxialAngle(slope); // major axis end points x1 = boxCentreX + longAxis / 2.0 * Math.cos(slope); y1 = boxCentreY + longAxis / 2.0 * Math.sin(slope); x2 = boxCentreX - longAxis / 2.0 * Math.cos(slope); y2 = boxCentreY - longAxis / 2.0 * Math.sin(slope); // find the key points int keyPoint1 = -1; int keyPoint2 = -1; double minDist = shortAxis * shortAxis * 1.05; for (i = 0; i < 4; i++) { x = vertices[keyPoints[i]][0]; y = vertices[keyPoints[i]][1]; dist = (x - x1) * (x - x1) + (y - y1) * (y - y1); if (dist < minDist) { keyPoint1 = keyPoints[i]; minDist = dist; } } minDist = shortAxis * shortAxis * 1.05; for (i = 0; i < 4; i++) { x = vertices[keyPoints[i]][0]; y = vertices[keyPoints[i]][1]; dist = (x - x2) * (x - x2) + (y - y2) * (y - y2); if (dist < minDist) { keyPoint2 = keyPoints[i]; minDist = dist; } } if (elongation > elongationThreshold) { i = (recordNum - 1) * 2; x = vertices[keyPoint1][0]; y = vertices[keyPoint1][1]; pointsTree.addPoint(new double[]{y, x}, new Integer(i)); pointLocations[i][0] = x; pointLocations[i][1] = y; pointAttributes[i][0] = recordNum; pointAttributes[i][1] = 1; x = vertices[keyPoint2][0]; y = vertices[keyPoint2][1]; pointsTree.addPoint(new double[]{y, x}, new Integer(i + 1)); pointLocations[i + 1][0] = x; pointLocations[i + 1][1] = y; pointAttributes[i + 1][0] = recordNum; pointAttributes[i + 1][1] = 2; } if (cancelOp) { cancelOperation(); return; } progress = (int) ((recordNum * 100.0) / numPolys); if (progress > oldProgress) { updateProgress(progress); oldProgress = progress; } } oldProgress = -1; for (i = 0; i < (numPolys * 2); i++) { if (pointAttributes[i][0] > 0) { int neighbourID = findConnectedNeighbour(i); if (neighbourID >= 0 && findConnectedNeighbour(neighbourID) == i) { pointAttributes[i][2] = pointAttributes[neighbourID][0]; pointAttributes[neighbourID][2] = pointAttributes[i][0]; pointAttributes[i][3] = neighbourID; pointAttributes[neighbourID][3] = i; // points = new double[2][2]; // points[0][0] = pointLocations[i][0]; // points[0][1] = pointLocations[i][1]; // points[1][0] = pointLocations[neighbourID][0]; // points[1][1] = pointLocations[neighbourID][1]; // // rowData = new Object[2]; // rowData[0] = new Double(pointAttributes[i][0]); // rowData[1] = new Double(1); // // poly = new PolyLine(parts, points); // output.addRecord(poly, rowData); } } if (cancelOp) { cancelOperation(); return; } progress = (int) ((i * 100.0) / (numPolys * 2)); if (progress > oldProgress) { updateProgress(progress); oldProgress = progress; } } List<Integer> chainPolys = new ArrayList<Integer>(); List<Integer> chainKeyPoints = new ArrayList<Integer>(); oldProgress = -1; int currentGroupID = 1; int activeNode = 0, lastNode = 0; int currentPoly = 0; for (i = 0; i < numPolys; i++) { if (polyAttributes[i][0] == 0) { // how many linked end nodes does this poly have? int linkedEndNodes = 0; if (pointAttributes[i * 2][2] > 0) { linkedEndNodes++; activeNode = i * 2; lastNode = i * 2 + 1; } if (pointAttributes[i * 2 + 1][2] > 0) { linkedEndNodes++; activeNode = i * 2 + 1; lastNode = i * 2; } if (linkedEndNodes == 1) { polyAttributes[i][0] = currentGroupID; boolean flag = true; currentPoly = i; chainPolys.clear(); chainPolys.add(currentPoly); chainKeyPoints.clear(); points.clear(); points.addMPoint(pointLocations[lastNode][0], pointLocations[lastNode][1]); points.addMPoint(pointLocations[activeNode][0], pointLocations[activeNode][1]); do { polyAttributes[currentPoly][0] = currentGroupID; if (pointAttributes[activeNode][0] == pointAttributes[lastNode][0]) { // we've visited each of the two end nodes and it's time to seek // a connection to another poly from the active node. if (pointAttributes[activeNode][2] > 0) { // there is a connecting poly currentPoly = pointAttributes[activeNode][2] - 1; lastNode = activeNode; activeNode = pointAttributes[activeNode][3]; chainPolys.add(currentPoly); } else { // there is no connecting poly, output the chain if (chainPolys.size() >= minChainLength) { for (int c : chainPolys) { rowData = new Object[2]; rowData[0] = new Double(c + 1); rowData[1] = new Double(currentGroupID); output.addRecord(input.getRecord(c).getGeometry(), rowData); } chainPolys.clear(); if (outputChainVector) { rowData = new Object[1]; rowData[0] = new Double(currentGroupID); chainVector.addRecord(new PolyLine(parts, points.getPointsArray()), rowData); } currentGroupID++; } flag = false; } } else { // we've only visited one of the two end nodes and should go to the other if (pointAttributes[activeNode][1] == 1) { lastNode = activeNode; activeNode++; } else { lastNode = activeNode; activeNode--; } points.addMPoint(pointLocations[lastNode][0], pointLocations[lastNode][1]); points.addMPoint(pointLocations[activeNode][0], pointLocations[activeNode][1]); } } while (flag); } } if (cancelOp) { cancelOperation(); return; } progress = (int) ((i * 100.0) / (numPolys)); if (progress > oldProgress) { updateProgress(progress); oldProgress = progress; } } output.write(); if (outputChainVector) { chainVector.write(); } // returning a header file string displays the image. returnData(outputFile); } catch (OutOfMemoryError oe) { myHost.showFeedback("An out-of-memory error has occurred during operation."); } catch (Exception e) { myHost.showFeedback("An error has occurred during operation. See log file for details."); myHost.logException("Error in " + getDescriptiveName(), e); } finally { updateProgress("Progress: ", 0); // tells the main application that this process is completed. amIActive = false; myHost.pluginComplete(); } } private int findConnectedNeighbour(int pointNum) { /* * Polygon 1 Polygon 2 * ________________ ________________ * | | | | * 1 2 3 4 * | | | | * ________________ ________________ * * point 2 = test point (pointNum) * * |---dist1---| * * |------------dist2-----------| * * |--------------dist3--------| * * |--------------dist4-------------------------| * * |--length1-------| * * |-----length2---| * * * All distances are handled as squared distances. */ double x1, y1, x2, y2, x3, y3, x4, y4; double dist1, dist2, dist3, dist4; double length1, length2; double minDist; double shorterPoly, longerPoly, shortestAllowableDist; int otherPointNum; int otherPoly; int otherEndiness; List<KdTree.Entry<Integer>> results; int myPoly = pointAttributes[pointNum][0]; int myEndiness = pointAttributes[pointNum][1]; int returnVal = -1; x2 = pointLocations[pointNum][0]; y2 = pointLocations[pointNum][1]; if (myEndiness == 1) { x1 = pointLocations[pointNum + 1][0]; y1 = pointLocations[pointNum + 1][1]; } else { x1 = pointLocations[pointNum - 1][0]; y1 = pointLocations[pointNum - 1][1]; } length1 = Math.sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2)); results = pointsTree.neighborsWithinRange(new double[]{y2, x2}, neighbourhoodRadius); minDist = neighbourhoodRadius * neighbourhoodRadius; for (KdTree.Entry entry : results) { otherPointNum = (int) (entry.value); otherPoly = pointAttributes[otherPointNum][0]; if (myPoly != otherPoly && pointAttributes[otherPointNum][2] == 0) { x3 = pointLocations[otherPointNum][0]; y3 = pointLocations[otherPointNum][1]; otherEndiness = pointAttributes[otherPointNum][1]; if (otherEndiness == 1) { x4 = pointLocations[otherPointNum + 1][0]; y4 = pointLocations[otherPointNum + 1][1]; } else { x4 = pointLocations[otherPointNum - 1][0]; y4 = pointLocations[otherPointNum - 1][1]; } dist1 = (x2 - x3) * (x2 - x3) + (y2 - y3) * (y2 - y3); if (dist1 < minDist) { length2 = Math.sqrt((x3 - x4) * (x3 - x4) + (y3 - y4) * (y3 - y4)); shorterPoly = Math.min(length1, length2); longerPoly = Math.max(length1, length2); double tmp1 = shorterPoly + Math.sqrt(dist1); double tmp2 = Math.sqrt(tmp1 * tmp1 + longerPoly * longerPoly); double tmp3 = Math.sqrt(dist1) + longerPoly + shorterPoly; shortestAllowableDist = tmp2 + (tmp3 - tmp2) * 0.5; dist2 = (x3 - x1) * (x3 - x1) + (y3 - y1) * (y3 - y1); dist3 = (x4 - x2) * (x4 - x2) + (y4 - y2) * (y4 - y2); dist4 = Math.sqrt((x4 - x1) * (x4 - x1) + (y4 - y1) * (y4 - y1)); if (dist1 < dist2 && dist1 < dist3 && dist4 > shortestAllowableDist) { minDist = dist1; returnVal = otherPointNum; } } } } return returnVal; } // /** // * This method is only used during testing. // */ // //This method is only used during testing. // public static void main(String[] args) { // args = new String[5]; // args[0] = "/Users/johnlindsay/Documents/Research/Contracts/NRCan 2012/Data/MediumLakes/medium lakes2.shp"; // args[1] = "/Users/johnlindsay/Documents/Research/Contracts/NRCan 2012/Data/MediumLakes/tmp7.shp"; // args[2] = "1000"; // args[3] = "3"; // args[4] = "/Users/johnlindsay/Documents/Research/Contracts/NRCan 2012/Data/MediumLakes/tmp6.shp"; // // FindPolygonChains fps = new FindPolygonChains(); // fps.setArgs(args); // fps.run(); // } }