/* * Copyright (C) 2011-2012 Dr. John Lindsay <jlindsay@uoguelph.ca> * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ package plugins; import java.text.DecimalFormat; import java.util.ArrayList; import java.util.Collections; import java.util.Date; import java.util.PriorityQueue; import whitebox.geospatialfiles.ShapeFile; import whitebox.geospatialfiles.WhiteboxRaster; import whitebox.geospatialfiles.WhiteboxRasterBase; import whitebox.geospatialfiles.shapefile.*; import whitebox.interfaces.WhiteboxPlugin; import whitebox.interfaces.WhiteboxPluginHost; import whitebox.structures.BoundingBox; import whitebox.structures.RowPriorityGridCell; /** * This tool can be used to decrement the elevation values in a digital elevation model (DEM) along a defined stream network. * * @author Dr. John Lindsay email: jlindsay@uoguelph.ca */ public class BurnStreams implements WhiteboxPlugin { private WhiteboxPluginHost myHost = null; private String[] args; WhiteboxRaster DEM; WhiteboxRaster streams; WhiteboxRaster output; String outputHeader = null; String streamsHeader = null; String demHeader = null; int rows = 0; int cols = 0; double noData = -32768; double gridRes = 0; /** * Used to retrieve the plugin tool's name. This is a short, unique name * containing no spaces. * * @return String containing plugin name. */ @Override public String getName() { return "BurnStreams"; } /** * Used to retrieve the plugin tool's descriptive name. This can be a longer * name (containing spaces) and is used in the interface to list the tool. * * @return String containing the plugin descriptive name. */ @Override public String getDescriptiveName() { return "Burn Streams"; } /** * Used to retrieve a short description of what the plugin tool does. * * @return String containing the plugin's description. */ @Override public String getToolDescription() { return "Decrements the elevations in a DEM along a stream network."; } /** * Used to identify which toolboxes this plugin tool should be listed in. * * @return Array of Strings. */ @Override public String[] getToolbox() { String[] ret = {"DEMPreprocessing", "StreamAnalysis"}; return ret; } /** * Sets the WhiteboxPluginHost to which the plugin tool is tied. This is the * class that the plugin will send all feedback messages, progress updates, * and return objects. * * @param host The WhiteboxPluginHost that called the plugin tool. */ @Override public void setPluginHost(WhiteboxPluginHost host) { myHost = host; } /** * Used to communicate feedback pop-up messages between a plugin tool and * the main Whitebox user-interface. * * @param feedback String containing the text to display. */ private void showFeedback(String message) { if (myHost != null) { myHost.showFeedback(message); } else { System.out.println(message); } } /** * Used to communicate a return object from a plugin tool to the main * Whitebox user-interface. * * @return Object, such as an output WhiteboxRaster. */ private void returnData(Object ret) { if (myHost != null) { myHost.returnData(ret); } } private int previousProgress = 0; private String previousProgressLabel = ""; /** * Used to communicate a progress update between a plugin tool and the main * Whitebox user interface. * * @param progressLabel A String to use for the progress label. * @param progress Float containing the progress value (between 0 and 100). */ private void updateProgress(String progressLabel, int progress) { if (myHost != null && ((progress != previousProgress) || (!progressLabel.equals(previousProgressLabel)))) { myHost.updateProgress(progressLabel, progress); } previousProgress = progress; previousProgressLabel = progressLabel; } /** * Used to communicate a progress update between a plugin tool and the main * Whitebox user interface. * * @param progress Float containing the progress value (between 0 and 100). */ private void updateProgress(int progress) { if (myHost != null && progress != previousProgress) { myHost.updateProgress(progress); } previousProgress = progress; } /** * Sets the arguments (parameters) used by the plugin. * * @param args An array of string arguments. */ @Override public void setArgs(String[] args) { this.args = args.clone(); } private boolean cancelOp = false; /** * Used to communicate a cancel operation from the Whitebox GUI. * * @param cancel Set to true if the plugin should be canceled. */ @Override public void setCancelOp(boolean cancel) { cancelOp = cancel; } private void cancelOperation() { showFeedback("Operation cancelled."); updateProgress("Progress: ", 0); } private boolean amIActive = false; /** * Used by the Whitebox GUI to tell if this plugin is still running. * * @return a boolean describing whether or not the plugin is actively being * used. */ @Override public boolean isActive() { return amIActive; } /** * Used to execute this plugin tool. */ @Override public void run() { amIActive = true; String inputStreamsFile; int row, col; int i; int topRow, bottomRow, leftCol, rightCol; float progress; double decrement; double decayCoefficient = 0; double elevation; double infVal = 9999999; double value; double rowYCoord, colXCoord; double[][] geometry; BoundingBox box; int numPoints, numParts, part; int startingPointInPart, endingPointInPart; double x1, y1, x2, y2, xPrime, yPrime; DecimalFormat df = new DecimalFormat("###,###,###,###"); if (args.length <= 0) { showFeedback("Plugin parameters have not been set."); return; } demHeader = args[0]; inputStreamsFile = args[1]; outputHeader = args[2]; decrement = Double.parseDouble(args[3]); if (!args[4].toLowerCase().contains("not specified")) { decayCoefficient = Double.parseDouble(args[4]); if (decayCoefficient < 0) { decayCoefficient = 0; } } // check to see that the inputHeader and outputHeader are not null. if ((demHeader == null) || (inputStreamsFile == null) || (outputHeader == null)) { showFeedback("One or more of the input parameters have not been set properly."); return; } try { DEM = new WhiteboxRaster(demHeader, "r"); rows = DEM.getNumberRows(); cols = DEM.getNumberColumns(); noData = DEM.getNoDataValue(); gridRes = (DEM.getCellSizeX() + DEM.getCellSizeY()) / 2; if (inputStreamsFile.toLowerCase().endsWith(".dep")) { streamsHeader = inputStreamsFile; streams = new WhiteboxRaster(streamsHeader, "r"); } else if (inputStreamsFile.toLowerCase().endsWith(".shp")) { streamsHeader = inputStreamsFile.replace(".shp", "_temp.dep"); // convert the streams vector into a temporary raster // initialize the shapefile input ShapeFile input = new ShapeFile(inputStreamsFile); int numRecs = input.getNumberOfRecords(); if (input.getShapeType() != ShapeType.POLYLINE && input.getShapeType() != ShapeType.POLYLINEZ && input.getShapeType() != ShapeType.POLYLINEM && input.getShapeType() != ShapeType.POLYGON && input.getShapeType() != ShapeType.POLYGONZ && input.getShapeType() != ShapeType.POLYGONM) { showFeedback("The input shapefile must be of a 'polyline' or " + "'polygon' data type."); return; } // initialize the output raster streams = new WhiteboxRaster(streamsHeader, "rw", demHeader, WhiteboxRasterBase.DataType.INTEGER, 0); streams.isTemporaryFile = true; // first sort the records based on their maxY coordinate. This will // help reduce the amount of disc IO for larger rasters. ArrayList<RecordInfo> myList = new ArrayList<RecordInfo>(); for (ShapeFileRecord record : input.records) { i = record.getRecordNumber(); box = getBoundingBoxFromShapefileRecord(record); myList.add(new RecordInfo(box.getMaxY(), i)); } Collections.sort(myList); long heapSize = Runtime.getRuntime().totalMemory(); int flushSize = (int) (heapSize / 32); int j, numCellsToWrite; PriorityQueue<RowPriorityGridCell> pq = new PriorityQueue<RowPriorityGridCell>(flushSize); RowPriorityGridCell cell; int numRecords = input.getNumberOfRecords(); int count = 0; int progressCount = (int) (numRecords / 100.0); if (progressCount <= 0) { progressCount = 1; } progress = 0; ShapeFileRecord record; for (RecordInfo ri : myList) { record = input.getRecord(ri.recNumber - 1); value = record.getRecordNumber(); geometry = getXYFromShapefileRecord(record); numPoints = geometry.length; numParts = partData.length; for (part = 0; part < numParts; part++) { box = new BoundingBox(); startingPointInPart = partData[part]; if (part < numParts - 1) { endingPointInPart = partData[part + 1]; } else { endingPointInPart = numPoints; } for (i = startingPointInPart; i < endingPointInPart; i++) { if (geometry[i][0] < box.getMinX()) { box.setMinX(geometry[i][0]); } if (geometry[i][0] > box.getMaxX()) { box.setMaxX(geometry[i][0]); } if (geometry[i][1] < box.getMinY()) { box.setMinY(geometry[i][1]); } if (geometry[i][1] > box.getMaxY()) { box.setMaxY(geometry[i][1]); } } topRow = streams.getRowFromYCoordinate(box.getMaxY()); bottomRow = streams.getRowFromYCoordinate(box.getMinY()); leftCol = streams.getColumnFromXCoordinate(box.getMinX()); rightCol = streams.getColumnFromXCoordinate(box.getMaxX()); // find each intersection with a row. for (row = topRow; row <= bottomRow; row++) { rowYCoord = streams.getYCoordinateFromRow(row); // find the x-coordinates of each of the line segments // that intersect this row's y coordinate for (i = startingPointInPart; i < endingPointInPart - 1; i++) { if (isBetween(rowYCoord, geometry[i][1], geometry[i + 1][1])) { y1 = geometry[i][1]; y2 = geometry[i + 1][1]; if (y2 != y1) { x1 = geometry[i][0]; x2 = geometry[i + 1][0]; // calculate the intersection point xPrime = x1 + (rowYCoord - y1) / (y2 - y1) * (x2 - x1); col = streams.getColumnFromXCoordinate(xPrime); //output.setValue(row, col, value); pq.add(new RowPriorityGridCell(row, col, value)); } } } } // find each intersection with a column. for (col = leftCol; col <= rightCol; col++) { colXCoord = streams.getXCoordinateFromColumn(col); for (i = startingPointInPart; i < endingPointInPart - 1; i++) { if (isBetween(colXCoord, geometry[i][0], geometry[i + 1][0])) { x1 = geometry[i][0]; x2 = geometry[i + 1][0]; if (x1 != x2) { y1 = geometry[i][1]; y2 = geometry[i + 1][1]; // calculate the intersection point yPrime = y1 + (colXCoord - x1) / (x2 - x1) * (y2 - y1); row = streams.getRowFromYCoordinate(yPrime); //output.setValue(row, col, value); pq.add(new RowPriorityGridCell(row, col, value)); } } } } } if (pq.size() >= flushSize) { j = 0; numCellsToWrite = pq.size(); do { cell = pq.poll(); streams.setValue(cell.row, cell.col, cell.z); j++; if (j % 1000 == 0) { if (cancelOp) { cancelOperation(); return; } updateProgress("Writing to Output (" + df.format(j) + " of " + df.format(numCellsToWrite) + "):", (int) (j * 100.0 / numCellsToWrite)); } } while (pq.size() > 0); } if (cancelOp) { cancelOperation(); return; } count++; if (count % progressCount == 0) { progress++; updateProgress((int)progress); } } j = 0; numCellsToWrite = pq.size(); do { cell = pq.poll(); streams.setValue(cell.row, cell.col, cell.z); j++; if (j % 1000 == 0) { if (cancelOp) { cancelOperation(); return; } updateProgress("Writing to Output (" + df.format(j) + " of " + df.format(numCellsToWrite) + "):", (int) (j * 100.0 / numCellsToWrite)); } } while (pq.size() > 0); streams.flush(); } else { showFeedback("The input streams file must be either a Whitebox raster or shapefile."); return; } if (streams.getNumberColumns() != cols || streams.getNumberRows() != rows) { showFeedback("The input files must have the same dimensions."); return; } output = new WhiteboxRaster(outputHeader, "rw", demHeader, WhiteboxRaster.DataType.FLOAT, infVal); output.setPreferredPalette(DEM.getPreferredPalette()); if (decayCoefficient > 0) { if (!CalculateDistance()) { showFeedback("An error was encountered calculating distances."); return; } double distVal = 0; double[] data; for (row = 0; row < rows; row++) { data = DEM.getRowValues(row); for (col = 0; col < cols; col++) { if (data[col] != noData) { distVal = output.getValue(row, col); elevation = data[col] - (Math.pow((gridRes / (gridRes + distVal)), decayCoefficient) * decrement); output.setValue(row, col, elevation); } else { output.setValue(row, col, noData); } } if (cancelOp) { cancelOperation(); return; } progress = (float) (100f * row / (rows - 1)); updateProgress("Burning Streams:", (int) progress); } } else { double[] demData; double[] streamData; for (row = 0; row < rows; row++) { demData = DEM.getRowValues(row); streamData = streams.getRowValues(row); for (col = 0; col < cols; col++) { if (demData[col] != noData && streamData[col] > 0) { elevation = demData[col] - decrement; output.setValue(row, col, elevation); } else { output.setValue(row, col, noData); } } if (cancelOp) { cancelOperation(); return; } progress = (float) (100f * row / (rows - 1)); updateProgress("Burning Streams:", (int) progress); } } output.addMetadataEntry("Created by the " + getDescriptiveName() + " tool."); output.addMetadataEntry("Created on " + new Date()); DEM.close(); output.close(); // returning a header file string displays the DEM. returnData(outputHeader); } catch (OutOfMemoryError oe) { myHost.showFeedback("An out-of-memory error has occurred during operation."); } catch (Exception e) { myHost.showFeedback("An error has occurred during operation. See log file for details."); myHost.logException("Error in " + getDescriptiveName(), e); } finally { updateProgress("Progress: ", 0); // tells the main application that this process is completed. amIActive = false; myHost.pluginComplete(); } } private boolean CalculateDistance() { try { int row, col; float progress = 0; double z, z2, zMin; int x, y, a, b, i; double h = 0; int whichCell; double infVal = 9999999; int[] dX = new int[]{-1, -1, 0, 1, 1, 1, 0, -1}; int[] dY = new int[]{0, -1, -1, -1, 0, 1, 1, 1}; int[] Gx = new int[]{1, 1, 0, 1, 1, 1, 0, 1}; int[] Gy = new int[]{0, 1, 1, 1, 0, 1, 1, 1}; WhiteboxRaster Rx = new WhiteboxRaster(outputHeader.replace(".dep", "_temp1.dep"), "rw", demHeader, WhiteboxRaster.DataType.FLOAT, 0); Rx.isTemporaryFile = true; WhiteboxRaster Ry = new WhiteboxRaster(outputHeader.replace(".dep", "_temp2.dep"), "rw", demHeader, WhiteboxRaster.DataType.FLOAT, 0); Ry.isTemporaryFile = true; double[] data; for (row = 0; row < rows; row++) { data = streams.getRowValues(row); for (col = 0; col < cols; col++) { if (data[col] > 0) { output.setValue(row, col, 0); } } if (cancelOp) { cancelOperation(); return false; } progress = (float) (100f * row / (rows - 1)); updateProgress("Calculating Distance From Streams:", (int) progress); } for (row = 0; row < rows; row++) { for (col = 0; col < cols; col++) { z = output.getValue(row, col); if (z != 0) { zMin = infVal; whichCell = -1; for (i = 0; i <= 3; i++) { x = col + dX[i]; y = row + dY[i]; z2 = output.getValue(y, x); if (z2 != noData) { switch (i) { case 0: h = 2 * Rx.getValue(y, x) + 1; break; case 1: h = 2 * (Rx.getValue(y, x) + Ry.getValue(y, x) + 1); break; case 2: h = 2 * Ry.getValue(y, x) + 1; break; case 3: h = 2 * (Rx.getValue(y, x) + Ry.getValue(y, x) + 1); break; } z2 += h; if (z2 < zMin) { zMin = z2; whichCell = i; } } } if (zMin < z) { output.setValue(row, col, zMin); x = col + dX[whichCell]; y = row + dY[whichCell]; Rx.setValue(row, col, Rx.getValue(y, x) + Gx[whichCell]); Ry.setValue(row, col, Ry.getValue(y, x) + Gy[whichCell]); } } } if (cancelOp) { cancelOperation(); return false; } progress = (float) (100f * row / (rows - 1)); updateProgress("Calculating Distance From Streams:", (int) progress); } for (row = rows - 1; row >= 0; row--) { for (col = cols - 1; col >= 0; col--) { z = output.getValue(row, col); if (z != 0) { zMin = infVal; whichCell = -1; for (i = 4; i <= 7; i++) { x = col + dX[i]; y = row + dY[i]; z2 = output.getValue(y, x); if (z2 != noData) { switch (i) { case 5: h = 2 * (Rx.getValue(y, x) + Ry.getValue(y, x) + 1); break; case 4: h = 2 * Rx.getValue(y, x) + 1; break; case 6: h = 2 * Ry.getValue(y, x) + 1; break; case 7: h = 2 * (Rx.getValue(y, x) + Ry.getValue(y, x) + 1); break; } z2 += h; if (z2 < zMin) { zMin = z2; whichCell = i; } } } if (zMin < z) { output.setValue(row, col, zMin); x = col + dX[whichCell]; y = row + dY[whichCell]; Rx.setValue(row, col, Rx.getValue(y, x) + Gx[whichCell]); Ry.setValue(row, col, Ry.getValue(y, x) + Gy[whichCell]); } } } if (cancelOp) { cancelOperation(); return false; } progress = (float) (100f * (rows - 1 - row) / (rows - 1)); updateProgress("Calculating Distance From Streams:", (int) progress); } for (row = 0; row < rows; row++) { for (col = 0; col < cols; col++) { z = streams.getValue(row, col); if (z != noData) { z = output.getValue(row, col); output.setValue(row, col, Math.sqrt(z) * gridRes); } else { output.setValue(row, col, noData); } } if (cancelOp) { cancelOperation(); return false; } progress = (float) (100f * row / (rows - 1)); updateProgress("Calculating Distance From Streams:", (int) progress); } streams.close(); Rx.close(); Ry.close(); return true; } catch (Exception e) { return false; } } int[] partData; private double[][] getXYFromShapefileRecord(ShapeFileRecord record) { double[][] ret; ShapeType shapeType = record.getShapeType(); switch (shapeType) { case POLYLINE: whitebox.geospatialfiles.shapefile.PolyLine recPolyLine = (whitebox.geospatialfiles.shapefile.PolyLine) (record.getGeometry()); ret = recPolyLine.getPoints(); partData = recPolyLine.getParts(); break; case POLYLINEZ: PolyLineZ recPolyLineZ = (PolyLineZ) (record.getGeometry()); ret = recPolyLineZ.getPoints(); partData = recPolyLineZ.getParts(); break; case POLYLINEM: PolyLineM recPolyLineM = (PolyLineM) (record.getGeometry()); ret = recPolyLineM.getPoints(); partData = recPolyLineM.getParts(); break; case POLYGON: Polygon recPolygon = (Polygon) (record.getGeometry()); ret = recPolygon.getPoints(); partData = recPolygon.getParts(); break; case POLYGONZ: PolygonZ recPolygonZ = (PolygonZ) (record.getGeometry()); ret = recPolygonZ.getPoints(); partData = recPolygonZ.getParts(); break; case POLYGONM: PolygonM recPolygonM = (PolygonM) (record.getGeometry()); ret = recPolygonM.getPoints(); partData = recPolygonM.getParts(); break; default: ret = new double[1][2]; ret[1][0] = -1; ret[1][1] = -1; break; } return ret; } private BoundingBox getBoundingBoxFromShapefileRecord(ShapeFileRecord record) { BoundingBox ret; ShapeType shapeType = record.getShapeType(); switch (shapeType) { case POLYLINE: whitebox.geospatialfiles.shapefile.PolyLine recPolyLine = (whitebox.geospatialfiles.shapefile.PolyLine) (record.getGeometry()); return recPolyLine.getBox(); case POLYLINEZ: PolyLineZ recPolyLineZ = (PolyLineZ) (record.getGeometry()); return recPolyLineZ.getBox(); case POLYLINEM: PolyLineM recPolyLineM = (PolyLineM) (record.getGeometry()); return recPolyLineM.getBox(); case POLYGON: Polygon recPolygon = (Polygon) (record.getGeometry()); return recPolygon.getBox(); case POLYGONZ: PolygonZ recPolygonZ = (PolygonZ) (record.getGeometry()); return recPolygonZ.getBox(); case POLYGONM: PolygonM recPolygonM = (PolygonM) (record.getGeometry()); return recPolygonM.getBox(); default: return new BoundingBox(Double.NaN, Double.NaN, Double.NaN, Double.NaN); } } private class RecordInfo implements Comparable<RecordInfo> { public double maxY; public int recNumber; public RecordInfo(double maxY, int recNumber) { this.maxY = maxY; this.recNumber = recNumber; } @Override public int compareTo(RecordInfo other) { final int BEFORE = -1; final int EQUAL = 0; final int AFTER = 1; if (this.maxY < other.maxY) { return BEFORE; } else if (this.maxY > other.maxY) { return AFTER; } if (this.recNumber < other.recNumber) { return BEFORE; } else if (this.recNumber > other.recNumber) { return AFTER; } return EQUAL; } } // Return true if val is between theshold1 and theshold2. private static boolean isBetween(double val, double threshold1, double threshold2) { if (val == threshold1 || val == threshold2) { return true; } return threshold2 > threshold1 ? val > threshold1 && val < threshold2 : val > threshold2 && val < threshold1; } }