/* * Copyright (C) 2014 Dr. John Lindsay <jlindsay@uoguelph.ca> * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ package whitebox.algorithms; import java.util.Date; import whitebox.geospatialfiles.WhiteboxRaster; /** * This algorithm takes an input raster of categorical data (e.g. a land-use * image) and assigns a unique identifier value to each contiguous group of * same-valued grid cells (i.e. region). * * @author johnlindsay */ public class Clump { double noData = -32768; WhiteboxRaster image; WhiteboxRaster output; double currentPatchNumber = 0; double currentImageValue = 0; int maxDepth = 1000; int depth = 0; int[] dX = new int[]{1, 1, 1, 0, -1, -1, -1, 0}; int[] dY = new int[]{-1, 0, 1, 1, 1, 0, -1, -1}; int numScanCells = 8; boolean blnIncludeDiagNeighbour = true; boolean blnTreatZerosAsBackground = false; String outputHeader = ""; public Clump(String inputHeaderFile) { this.image = new WhiteboxRaster(inputHeaderFile, "r"); } public Clump(WhiteboxRaster inputImage) { this.image = inputImage; } public Clump(WhiteboxRaster inputImage, boolean includeDiagonalNeighbours) { this.image = inputImage; this.blnIncludeDiagNeighbour = includeDiagonalNeighbours; if (!blnIncludeDiagNeighbour) { dX = new int[]{0, 1, 0, -1}; dY = new int[]{-1, 0, 1, 0}; } } public Clump(WhiteboxRaster inputImage, boolean includeDiagonalNeighbours, boolean treatZerosAsBackground) { this.image = inputImage; this.blnIncludeDiagNeighbour = includeDiagonalNeighbours; if (!blnIncludeDiagNeighbour) { dX = new int[]{0, 1, 0, -1}; dY = new int[]{-1, 0, 1, 0}; } this.blnTreatZerosAsBackground = treatZerosAsBackground; } public String getOutputHeader() { return outputHeader; } public void setOutputHeader(String outputHeader) { this.outputHeader = outputHeader; } public void setIncludeDiagonalNeighbours(boolean value) { this.blnIncludeDiagNeighbour = value; if (!blnIncludeDiagNeighbour) { dX = new int[]{0, 1, 0, -1}; dY = new int[]{-1, 0, 1, 0}; } } public WhiteboxRaster run() throws Exception { int row, col, x, y, i; boolean blnFoundNeighbour; double maxPatchValue = 1; numScanCells = dY.length; int rows = image.getNumberRows(); int cols = image.getNumberColumns(); noData = image.getNoDataValue(); double initialValue = -1; if (outputHeader.isEmpty()) { outputHeader = image.getHeaderFile().replace(".dep", "_clumped.dep"); } output = new WhiteboxRaster(outputHeader, "rw", image.getHeaderFile(), WhiteboxRaster.DataType.FLOAT, initialValue); output.setDataScale(WhiteboxRaster.DataScale.CATEGORICAL); output.setPreferredPalette("qual.pal"); if (blnTreatZerosAsBackground) { for (row = 0; row < rows; row++) { for (col = 0; col < cols; col++) { if (image.getValue(row, col) == 0) { output.setValue(row, col, 0); } } } if (output.getValue(0, 0) == -1) { output.setValue(0, 0, maxPatchValue); // recursively scan all connected cells of equal value in Image depth = 0; ScanConnectedCells(0, 0, image.getValue(0, 0), initialValue, maxPatchValue); } } else { output.setValue(0, 0, maxPatchValue); // recursively scan all connected cells of equal value in Image depth = 0; ScanConnectedCells(0, 0, image.getValue(0, 0), initialValue, maxPatchValue); } double patchValue = 0; double neighbourPatchValue = 0; double newPatchValue = 0; double imageValue = 0; for (row = 0; row < rows; row++) { for (col = 0; col < cols; col++) { imageValue = image.getValue(row, col); if (imageValue != noData) { patchValue = output.getValue(row, col); if (patchValue == initialValue) { // see if any neighbour has the same value in the input image blnFoundNeighbour = false; for (i = 0; i < numScanCells; i++) { x = col + dX[i]; y = row + dY[i]; neighbourPatchValue = output.getValue(y, x); if (neighbourPatchValue != initialValue && image.getValue(y, x) == imageValue) { // cell is neighbouring a cell with the same value in image that // has already been assigned a patch value output.setValue(row, col, neighbourPatchValue); newPatchValue = neighbourPatchValue; blnFoundNeighbour = true; break; } } if (!blnFoundNeighbour) { // no neighbouring cell has the same value in Image and has // already been assigned a value. A new one is needed. maxPatchValue++; newPatchValue = maxPatchValue; output.setValue(row, col, newPatchValue); } // recursively scan all connected cells of equal value in Image depth = 0; ScanConnectedCells(row, col, imageValue, initialValue, newPatchValue); } } else { output.setValue(row, col, noData); } } } // find all cells with neighbouring cells that have the same value in // the input image but different patch values in the output image. // Recursively scan them to change the larger patch ID to the lower value. // Iterate this process until there are no further changes to the image. boolean somethingDone; double[] reclass = new double[(int) maxPatchValue + 1]; // this array is used to keep track of the eliminated patches. do { somethingDone = false; for (row = 0; row < rows; row++) { for (col = 0; col < cols; col++) { imageValue = image.getValue(row, col); if (imageValue != noData) { patchValue = output.getValue(row, col); for (i = 0; i < numScanCells; i++) { x = col + dX[i]; y = row + dY[i]; neighbourPatchValue = output.getValue(y, x); if (neighbourPatchValue != patchValue && image.getValue(y, x) == imageValue) { // The two patches are equivalent. Find the // lower valued cell and initiate a recursive // scan from there. somethingDone = true; if (patchValue < neighbourPatchValue) { reclass[(int) neighbourPatchValue] = -1; output.setValue(y, x, patchValue); ScanConnectedCells(y, x, imageValue, neighbourPatchValue, patchValue); } else { reclass[(int) patchValue] = -1; output.setValue(row, col, neighbourPatchValue); ScanConnectedCells(row, col, imageValue, patchValue, neighbourPatchValue); patchValue = neighbourPatchValue; } } } } } } } while (somethingDone); i = 0; for (int a = 0; a < maxPatchValue + 1; a++) { if (reclass[a] != -1) { reclass[a] = i; i++; } } for (row = 0; row < rows; row++) { for (col = 0; col < cols; col++) { patchValue = output.getValue(row, col); if (patchValue != noData) { output.setValue(row, col, reclass[(int) patchValue]); } } } output.addMetadataEntry("Created by the " + "Clump algorithm."); output.addMetadataEntry("Created on " + new Date()); output.flush(); output.writeHeaderFile(); return output; } private void ScanConnectedCells(int row, int col, double imageValue, double currentPatchValue, double newPatchValue) { depth++; int x, y; if (depth < maxDepth) { for (int c = 0; c < numScanCells; c++) { x = col + dX[c]; y = row + dY[c]; if ((output.getValue(y, x) == currentPatchValue) && (image.getValue(y, x) == imageValue)) { // cell should be assigned the new patch value and has the same value in Image output.setValue(y, x, newPatchValue); ScanConnectedCells(y, x, imageValue, currentPatchValue, newPatchValue); } } } depth--; } }