/* * Copyright (C) 2011-2012 Dr. John Lindsay <jlindsay@uoguelph.ca> * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ package plugins; import java.io.File; import whitebox.geospatialfiles.ShapeFile; import whitebox.geospatialfiles.WhiteboxRaster; import whitebox.geospatialfiles.shapefile.attributes.DBFField; import whitebox.geospatialfiles.shapefile.attributes.DBFWriter; import whitebox.geospatialfiles.shapefile.PointsList; import whitebox.geospatialfiles.shapefile.PolyLine; import whitebox.geospatialfiles.shapefile.ShapeType; import whitebox.interfaces.WhiteboxPlugin; import whitebox.interfaces.WhiteboxPluginHost; import whitebox.utilities.BitOps; /** * Creates a vector contour coverage from a digital elevation model (DEM). * * @author Dr. John Lindsay email: jlindsay@uoguelph.ca */ public class Contour implements WhiteboxPlugin { private double noData; private WhiteboxPluginHost myHost = null; private String[] args; /** * Used to retrieve the plugin tool's name. This is a short, unique name * containing no spaces. * * @return String containing plugin name. */ @Override public String getName() { return "Contour"; } /** * Used to retrieve the plugin tool's descriptive name. This can be a longer * name (containing spaces) and is used in the interface to list the tool. * * @return String containing the plugin descriptive name. */ @Override public String getDescriptiveName() { return "Contour"; } /** * Used to retrieve a short description of what the plugin tool does. * * @return String containing the plugin's description. */ @Override public String getToolDescription() { return "Creates a contour coverage from a DEM"; } /** * Used to identify which toolboxes this plugin tool should be listed in. * * @return Array of Strings. */ @Override public String[] getToolbox() { String[] ret = { "TerrainAnalysis" }; return ret; } /** * Sets the WhiteboxPluginHost to which the plugin tool is tied. This is the * class that the plugin will send all feedback messages, progress updates, * and return objects. * * @param host The WhiteboxPluginHost that called the plugin tool. */ @Override public void setPluginHost(WhiteboxPluginHost host) { myHost = host; } /** * Used to communicate feedback pop-up messages between a plugin tool and * the main Whitebox user-interface. * * @param feedback String containing the text to display. */ private void showFeedback(String message) { if (myHost != null) { myHost.showFeedback(message); } else { System.out.println(message); } } /** * Used to communicate a return object from a plugin tool to the main * Whitebox user-interface. * * @return Object, such as an output WhiteboxRaster. */ private void returnData(Object ret) { if (myHost != null) { myHost.returnData(ret); } } private int previousProgress = 0; private String previousProgressLabel = ""; /** * Used to communicate a progress update between a plugin tool and the main * Whitebox user interface. * * @param progressLabel A String to use for the progress label. * @param progress Float containing the progress value (between 0 and 100). */ private void updateProgress(String progressLabel, int progress) { if (myHost != null && ((progress != previousProgress) || (!progressLabel.equals(previousProgressLabel)))) { myHost.updateProgress(progressLabel, progress); } previousProgress = progress; previousProgressLabel = progressLabel; } /** * Used to communicate a progress update between a plugin tool and the main * Whitebox user interface. * * @param progress Float containing the progress value (between 0 and 100). */ private void updateProgress(int progress) { if (myHost != null && progress != previousProgress) { myHost.updateProgress(progress); } previousProgress = progress; } /** * Sets the arguments (parameters) used by the plugin. * * @param args An array of string arguments. */ @Override public void setArgs(String[] args) { this.args = args.clone(); } private boolean cancelOp = false; /** * Used to communicate a cancel operation from the Whitebox GUI. * * @param cancel Set to true if the plugin should be canceled. */ @Override public void setCancelOp(boolean cancel) { cancelOp = cancel; } private void cancelOperation() { showFeedback("Operation cancelled."); updateProgress("Progress: ", 0); } private boolean amIActive = false; /** * Used by the Whitebox GUI to tell if this plugin is still running. * * @return a boolean describing whether or not the plugin is actively being * used. */ @Override public boolean isActive() { return amIActive; } /** * Used to execute this plugin tool. */ @Override public void run() { /* Diagram 1: * Cell Numbering * _____________ * | | | * | 0 | 1 | * |_____|_____| * | | | * | 2 | 3 | * |_____|_____| * */ /* Diagram 2: * Edge Numbering (shared edges between cells) * _____________ * | | | * | 3 | * |__2__|__0__| * | | | * | 1 | * |_____|_____| * */ /* Diagram 3: * Cell Edge Numbering * * ___0___ * | | * | | * 3 1 * | | * |___2___| * */ amIActive = true; String demHeader; String outputFileName; boolean flag; int row, col; double xCoord, yCoord; int progress; int i; double value, z, zN; double contourInterval; double baseContour; double zConvFactor = 1.0; int FID = 0; double topNeighbour, leftNeighbour; int[] rowVals = new int[2]; int[] colVals = new int[2]; int traceDirection = 0; int previousTraceDirection = 0; double currentHalfRow = 0, currentHalfCol = 0; double[] elevClassData = new double[4]; long numPoints; double contourValue = 0; boolean val1, val2; boolean[] edges = new boolean[4]; boolean[] untraversed = new boolean[4]; int[] visitedData = new int[4]; if (args.length <= 0) { showFeedback("Plugin parameters have not been set."); return; } demHeader = args[0]; outputFileName = args[1]; contourInterval = Double.parseDouble(args[2]); if (contourInterval <= 0) { showFeedback("The contour interval must be greater than zero."); return; } baseContour = Double.parseDouble(args[3]); zConvFactor = Double.parseDouble(args[4]); // check to see that the inputHeader and outputHeader are not null. if ((demHeader == null) || (outputFileName == null)) { showFeedback("One or more of the input parameters have not been set properly."); return; } try { WhiteboxRaster DEM = new WhiteboxRaster(demHeader, "r"); int rows = DEM.getNumberRows(); int cols = DEM.getNumberColumns(); noData = DEM.getNoDataValue(); double gridResX = DEM.getCellSizeX(); double gridResY = DEM.getCellSizeY(); double east = DEM.getEast() - gridResX / 2.0; double west = DEM.getWest() + gridResX / 2.0; double EWRange = east - west; double north = DEM.getNorth() - gridResY / 2.0; double south = DEM.getSouth() + gridResY / 2.0; double NSRange = north - south; // create a temporary raster image. String tempHeader1 = demHeader.replace(".dep", "_temp1.dep"); WhiteboxRaster temp1 = new WhiteboxRaster(tempHeader1, "rw", demHeader, WhiteboxRaster.DataType.INTEGER, 0); temp1.isTemporaryFile = true; // set up the output files of the shapefile and the dbf ShapeFile output = new ShapeFile(outputFileName, ShapeType.POLYLINE); DBFField fields[] = new DBFField[2]; fields[0] = new DBFField(); fields[0].setName("FID"); fields[0].setDataType(DBFField.DBFDataType.NUMERIC); fields[0].setFieldLength(10); fields[0].setDecimalCount(0); fields[1] = new DBFField(); fields[1].setName("ELEV"); fields[1].setDataType(DBFField.DBFDataType.NUMERIC); fields[1].setFieldLength(10); fields[1].setDecimalCount(3); String DBFName = output.getDatabaseFile(); DBFWriter writer = new DBFWriter(new File(DBFName)); /* this DBFWriter object is now in Syc Mode */ writer.setFields(fields); int[] parts = {0}; for (row = 0; row < rows; row++) { col = 0; z = DEM.getValue(row, col); if (z != noData) { z = baseContour + Math.floor(((z * zConvFactor) - baseContour) / contourInterval) * contourInterval; zN = DEM.getValue(row - 1, col); topNeighbour = baseContour + Math.floor(((zN * zConvFactor) - baseContour) / contourInterval) * contourInterval; if (topNeighbour != z && zN != noData) { contourValue = Math.max(z, topNeighbour); currentHalfRow = row - 0.5; currentHalfCol = -0.5; traceDirection = -1; numPoints = 0; FID++; PointsList points = new PointsList(); flag = true; do { // Get the reclassed elevation data for the 2 x 2 // window, i.e. the window in Diagram 1 above. rowVals[0] = (int)Math.floor(currentHalfRow); rowVals[1] = (int)Math.ceil(currentHalfRow); colVals[0] = (int)Math.floor(currentHalfCol); colVals[1] = (int)Math.ceil(currentHalfCol); if (DEM.getValue(rowVals[0], colVals[0]) != noData) { elevClassData[0] = baseContour + Math.floor(((DEM.getValue(rowVals[0], colVals[0]) * zConvFactor) - baseContour) / contourInterval) * contourInterval; } else { elevClassData[0] = noData; } if (DEM.getValue(rowVals[0], colVals[1]) != noData) { elevClassData[1] = baseContour + Math.floor(((DEM.getValue(rowVals[0], colVals[1]) * zConvFactor) - baseContour) / contourInterval) * contourInterval; } else { elevClassData[1] = noData; } if (DEM.getValue(rowVals[1], colVals[0]) != noData) { elevClassData[2] = baseContour + Math.floor(((DEM.getValue(rowVals[1], colVals[0]) * zConvFactor) - baseContour) / contourInterval) * contourInterval; } else { elevClassData[2] = noData; } if (DEM.getValue(rowVals[1], colVals[1]) != noData) { elevClassData[3] = baseContour + Math.floor(((DEM.getValue(rowVals[1], colVals[1]) * zConvFactor) - baseContour) / contourInterval) * contourInterval; } else { elevClassData[3] = noData; } // Which cell boundaries in the 2 x 2 window are edges? edges = new boolean[4]; // edges array refers to the cell boundary edges // in Diagram 2 above. if (elevClassData[1] != elevClassData[3] && Math.min(elevClassData[1], elevClassData[3]) != noData) { edges[0] = true; } if (elevClassData[2] != elevClassData[3] && Math.min(elevClassData[2], elevClassData[3]) != noData) { edges[1] = true; } if (elevClassData[0] != elevClassData[2] && Math.min(elevClassData[0], elevClassData[2]) != noData) { edges[2] = true; } if (elevClassData[0] != elevClassData[1] && Math.min(elevClassData[0], elevClassData[1]) != noData) { edges[3] = true; } // Which cell boundaries have been visited before? visitedData = new int[4]; // vistedData array refers to the cell numbering // in Diagram 1 above but the data are bit arrays // with values assigned to cell edges as described in // Diagram 3. visitedData[0] = (int)temp1.getValue(rowVals[0], colVals[0]); // top-left cell visitedData[1] = (int)temp1.getValue(rowVals[0], colVals[1]); // top-right cell visitedData[2] = (int)temp1.getValue(rowVals[1], colVals[0]); // bottom-left cell visitedData[3] = (int)temp1.getValue(rowVals[1], colVals[1]); // bottom-right cell untraversed = new boolean[4]; // untraversed array refers to the cell boundary edges // in Diagram 2 above. if (visitedData[1] == 0 && visitedData[3] == 0) { // none of the four edges of these cells have been // previously traversed. Easy. untraversed[0] = true; } else { // see if cell 1, edge 2 or cell 3, edge 0 have // been traversed. val1 = BitOps.checkBit(visitedData[1], 2); val2 = BitOps.checkBit(visitedData[3], 0); untraversed[0] = !(val1 | val2); } if (visitedData[2] == 0 && visitedData[3] == 0) { // none of the four edges of these cells have been // previously traversed. Easy. untraversed[1] = true; } else { // see if cell 2, edge 1 or cell 3, edge 3 have // been traversed. val1 = BitOps.checkBit(visitedData[2], 1); val2 = BitOps.checkBit(visitedData[3], 3); untraversed[1] = !(val1 | val2); } if (visitedData[0] == 0 && visitedData[2] == 0) { // none of the four edges of these cells have been // previously traversed. Easy. untraversed[2] = true; } else { // see if cell 0, edge 2 or cell 2, edge 0 have // been traversed. val1 = BitOps.checkBit(visitedData[0], 2); val2 = BitOps.checkBit(visitedData[2], 0); untraversed[2] = !(val1 | val2); } if (visitedData[0] == 0 && visitedData[1] == 0) { // none of the four edges of these cells have been // previously traversed. Easy. untraversed[3] = true; } else { // see if cell 0, edge 1 or cell 1, edge 3 have // been traversed. val1 = BitOps.checkBit(visitedData[0], 1); val2 = BitOps.checkBit(visitedData[1], 3); untraversed[3] = !(val1 | val2); } // which edge will you move across? previousTraceDirection = traceDirection; if (edges[0] && untraversed[0]) { traceDirection = 0; } else if (edges[1] && untraversed[1]) { traceDirection = 1; } else if (edges[2] && untraversed[2]) { traceDirection = 2; } else if (edges[3] && untraversed[3]) { traceDirection = 3; } else { traceDirection = -1; flag = false; } if (previousTraceDirection != traceDirection) { xCoord = west + (currentHalfCol / cols) * EWRange; yCoord = north - (currentHalfRow / rows) * NSRange; points.addPoint(xCoord, yCoord); } switch (traceDirection) { case 0: currentHalfCol += 1.0; temp1.setValue(rowVals[0], colVals[1], BitOps.setBit(visitedData[1], 2)); temp1.setValue(rowVals[1], colVals[1], BitOps.setBit(visitedData[3], 0)); break; case 1: currentHalfRow += 1.0; temp1.setValue(rowVals[1], colVals[0], BitOps.setBit(visitedData[2], 1)); temp1.setValue(rowVals[1], colVals[1], BitOps.setBit(visitedData[3], 3)); break; case 2: currentHalfCol -= 1.0; temp1.setValue(rowVals[0], colVals[0], BitOps.setBit(visitedData[0], 2)); temp1.setValue(rowVals[1], colVals[0], BitOps.setBit(visitedData[2], 0)); break; case 3: currentHalfRow -= 1.0; temp1.setValue(rowVals[0], colVals[0], BitOps.setBit(visitedData[0], 1)); temp1.setValue(rowVals[0], colVals[1], BitOps.setBit(visitedData[1], 3)); break; } numPoints++; if (numPoints > 1000000) { flag = false; } } while (flag); if (numPoints > 1) { // add the line to the shapefile. PolyLine line = new PolyLine(parts, points.getPointsArray()); output.addRecord(line); Object[] rowData = new Object[2]; rowData[0] = new Double(FID); rowData[1] = new Double(contourValue); writer.addRecord(rowData); } } } if (cancelOp) { cancelOperation(); return; } progress = (int)(100f * row / (rows - 1)); updateProgress("Loop 1 of 5:", progress); } for (col = 0; col < cols; col++) { row = 0; z = DEM.getValue(row, col); if (z != noData) { z = baseContour + Math.floor(((z * zConvFactor) - baseContour) / contourInterval) * contourInterval; zN = DEM.getValue(row, col - 1); leftNeighbour = baseContour + Math.floor(((zN * zConvFactor) - baseContour) / contourInterval) * contourInterval; if (leftNeighbour != z && zN != noData) { contourValue = Math.max(z, leftNeighbour); currentHalfRow = -0.5; currentHalfCol = col - 0.5; traceDirection = -1; numPoints = 0; FID++; PointsList points = new PointsList(); flag = true; do { // Get the reclassed elevation data for the 2 x 2 // window, i.e. the window in Diagram 1 above. rowVals[0] = (int)Math.floor(currentHalfRow); rowVals[1] = (int)Math.ceil(currentHalfRow); colVals[0] = (int)Math.floor(currentHalfCol); colVals[1] = (int)Math.ceil(currentHalfCol); if (DEM.getValue(rowVals[0], colVals[0]) != noData) { elevClassData[0] = baseContour + Math.floor(((DEM.getValue(rowVals[0], colVals[0]) * zConvFactor) - baseContour) / contourInterval) * contourInterval; } else { elevClassData[0] = noData; } if (DEM.getValue(rowVals[0], colVals[1]) != noData) { elevClassData[1] = baseContour + Math.floor(((DEM.getValue(rowVals[0], colVals[1]) * zConvFactor) - baseContour) / contourInterval) * contourInterval; } else { elevClassData[1] = noData; } if (DEM.getValue(rowVals[1], colVals[0]) != noData) { elevClassData[2] = baseContour + Math.floor(((DEM.getValue(rowVals[1], colVals[0]) * zConvFactor) - baseContour) / contourInterval) * contourInterval; } else { elevClassData[2] = noData; } if (DEM.getValue(rowVals[1], colVals[1]) != noData) { elevClassData[3] = baseContour + Math.floor(((DEM.getValue(rowVals[1], colVals[1]) * zConvFactor) - baseContour) / contourInterval) * contourInterval; } else { elevClassData[3] = noData; } // Which cell boundaries in the 2 x 2 window are edges? edges = new boolean[4]; // edges array refers to the cell boundary edges // in Diagram 2 above. if (elevClassData[1] != elevClassData[3] && Math.min(elevClassData[1], elevClassData[3]) != noData) { edges[0] = true; } if (elevClassData[2] != elevClassData[3] && Math.min(elevClassData[2], elevClassData[3]) != noData) { edges[1] = true; } if (elevClassData[0] != elevClassData[2] && Math.min(elevClassData[0], elevClassData[2]) != noData) { edges[2] = true; } if (elevClassData[0] != elevClassData[1] && Math.min(elevClassData[0], elevClassData[1]) != noData) { edges[3] = true; } // Which cell boundaries have been visited before? visitedData = new int[4]; // vistedData array refers to the cell numbering // in Diagram 1 above but the data are bit arrays // with values assigned to cell edges as described in // Diagram 3. visitedData[0] = (int)temp1.getValue(rowVals[0], colVals[0]); // top-left cell visitedData[1] = (int)temp1.getValue(rowVals[0], colVals[1]); // top-right cell visitedData[2] = (int)temp1.getValue(rowVals[1], colVals[0]); // bottom-left cell visitedData[3] = (int)temp1.getValue(rowVals[1], colVals[1]); // bottom-right cell untraversed = new boolean[4]; // untraversed array refers to the cell boundary edges // in Diagram 2 above. if (visitedData[1] == 0 && visitedData[3] == 0) { // none of the four edges of these cells have been // previously traversed. Easy. untraversed[0] = true; } else { // see if cell 1, edge 2 or cell 3, edge 0 have // been traversed. val1 = BitOps.checkBit(visitedData[1], 2); val2 = BitOps.checkBit(visitedData[3], 0); untraversed[0] = !(val1 | val2); } if (visitedData[2] == 0 && visitedData[3] == 0) { // none of the four edges of these cells have been // previously traversed. Easy. untraversed[1] = true; } else { // see if cell 2, edge 1 or cell 3, edge 3 have // been traversed. val1 = BitOps.checkBit(visitedData[2], 1); val2 = BitOps.checkBit(visitedData[3], 3); untraversed[1] = !(val1 | val2); } if (visitedData[0] == 0 && visitedData[2] == 0) { // none of the four edges of these cells have been // previously traversed. Easy. untraversed[2] = true; } else { // see if cell 0, edge 2 or cell 2, edge 0 have // been traversed. val1 = BitOps.checkBit(visitedData[0], 2); val2 = BitOps.checkBit(visitedData[2], 0); untraversed[2] = !(val1 | val2); } if (visitedData[0] == 0 && visitedData[1] == 0) { // none of the four edges of these cells have been // previously traversed. Easy. untraversed[3] = true; } else { // see if cell 0, edge 1 or cell 1, edge 3 have // been traversed. val1 = BitOps.checkBit(visitedData[0], 1); val2 = BitOps.checkBit(visitedData[1], 3); untraversed[3] = !(val1 | val2); } // which edge will you move across? previousTraceDirection = traceDirection; if (edges[0] && untraversed[0]) { traceDirection = 0; } else if (edges[1] && untraversed[1]) { traceDirection = 1; } else if (edges[2] && untraversed[2]) { traceDirection = 2; } else if (edges[3] && untraversed[3]) { traceDirection = 3; } else { traceDirection = -1; flag = false; } if (previousTraceDirection != traceDirection) { xCoord = west + (currentHalfCol / cols) * EWRange; yCoord = north - (currentHalfRow / rows) * NSRange; points.addPoint(xCoord, yCoord); } switch (traceDirection) { case 0: currentHalfCol += 1.0; temp1.setValue(rowVals[0], colVals[1], BitOps.setBit(visitedData[1], 2)); temp1.setValue(rowVals[1], colVals[1], BitOps.setBit(visitedData[3], 0)); break; case 1: currentHalfRow += 1.0; temp1.setValue(rowVals[1], colVals[0], BitOps.setBit(visitedData[2], 1)); temp1.setValue(rowVals[1], colVals[1], BitOps.setBit(visitedData[3], 3)); break; case 2: currentHalfCol -= 1.0; temp1.setValue(rowVals[0], colVals[0], BitOps.setBit(visitedData[0], 2)); temp1.setValue(rowVals[1], colVals[0], BitOps.setBit(visitedData[2], 0)); break; case 3: currentHalfRow -= 1.0; temp1.setValue(rowVals[0], colVals[0], BitOps.setBit(visitedData[0], 1)); temp1.setValue(rowVals[0], colVals[1], BitOps.setBit(visitedData[1], 3)); break; } numPoints++; if (numPoints > 1000000) { flag = false; } } while (flag); if (numPoints > 1) { // add the line to the shapefile. PolyLine line = new PolyLine(parts, points.getPointsArray()); output.addRecord(line); Object[] rowData = new Object[2]; rowData[0] = new Double(FID); rowData[1] = new Double(contourValue); writer.addRecord(rowData); } } } if (cancelOp) { cancelOperation(); return; } progress = (int)(100f * col / (cols - 1)); updateProgress("Loop 2 of 5:", progress); } for (row = 0; row < rows; row++) { col = cols - 1; z = DEM.getValue(row, col); if (z != noData) { z = baseContour + Math.floor(((z * zConvFactor) - baseContour) / contourInterval) * contourInterval; zN = DEM.getValue(row - 1, col); topNeighbour = baseContour + Math.floor(((zN * zConvFactor) - baseContour) / contourInterval) * contourInterval; if (topNeighbour != z && zN != noData) { contourValue = Math.max(z, topNeighbour); currentHalfRow = row - 0.5; currentHalfCol = col + 0.5; traceDirection = -1; numPoints = 0; FID++; PointsList points = new PointsList(); flag = true; do { // Get the reclassed elevation data for the 2 x 2 // window, i.e. the window in Diagram 1 above. rowVals[0] = (int)Math.floor(currentHalfRow); rowVals[1] = (int)Math.ceil(currentHalfRow); colVals[0] = (int)Math.floor(currentHalfCol); colVals[1] = (int)Math.ceil(currentHalfCol); if (DEM.getValue(rowVals[0], colVals[0]) != noData) { elevClassData[0] = baseContour + Math.floor(((DEM.getValue(rowVals[0], colVals[0]) * zConvFactor) - baseContour) / contourInterval) * contourInterval; } else { elevClassData[0] = noData; } if (DEM.getValue(rowVals[0], colVals[1]) != noData) { elevClassData[1] = baseContour + Math.floor(((DEM.getValue(rowVals[0], colVals[1]) * zConvFactor) - baseContour) / contourInterval) * contourInterval; } else { elevClassData[1] = noData; } if (DEM.getValue(rowVals[1], colVals[0]) != noData) { elevClassData[2] = baseContour + Math.floor(((DEM.getValue(rowVals[1], colVals[0]) * zConvFactor) - baseContour) / contourInterval) * contourInterval; } else { elevClassData[2] = noData; } if (DEM.getValue(rowVals[1], colVals[1]) != noData) { elevClassData[3] = baseContour + Math.floor(((DEM.getValue(rowVals[1], colVals[1]) * zConvFactor) - baseContour) / contourInterval) * contourInterval; } else { elevClassData[3] = noData; } // Which cell boundaries in the 2 x 2 window are edges? edges = new boolean[4]; // edges array refers to the cell boundary edges // in Diagram 2 above. if (elevClassData[1] != elevClassData[3] && Math.min(elevClassData[1], elevClassData[3]) != noData) { edges[0] = true; } if (elevClassData[2] != elevClassData[3] && Math.min(elevClassData[2], elevClassData[3]) != noData) { edges[1] = true; } if (elevClassData[0] != elevClassData[2] && Math.min(elevClassData[0], elevClassData[2]) != noData) { edges[2] = true; } if (elevClassData[0] != elevClassData[1] && Math.min(elevClassData[0], elevClassData[1]) != noData) { edges[3] = true; } // Which cell boundaries have been visited before? visitedData = new int[4]; // vistedData array refers to the cell numbering // in Diagram 1 above but the data are bit arrays // with values assigned to cell edges as described in // Diagram 3. visitedData[0] = (int)temp1.getValue(rowVals[0], colVals[0]); // top-left cell visitedData[1] = (int)temp1.getValue(rowVals[0], colVals[1]); // top-right cell visitedData[2] = (int)temp1.getValue(rowVals[1], colVals[0]); // bottom-left cell visitedData[3] = (int)temp1.getValue(rowVals[1], colVals[1]); // bottom-right cell untraversed = new boolean[4]; // untraversed array refers to the cell boundary edges // in Diagram 2 above. if (visitedData[1] == 0 && visitedData[3] == 0) { // none of the four edges of these cells have been // previously traversed. Easy. untraversed[0] = true; } else { // see if cell 1, edge 2 or cell 3, edge 0 have // been traversed. val1 = BitOps.checkBit(visitedData[1], 2); val2 = BitOps.checkBit(visitedData[3], 0); untraversed[0] = !(val1 | val2); } if (visitedData[2] == 0 && visitedData[3] == 0) { // none of the four edges of these cells have been // previously traversed. Easy. untraversed[1] = true; } else { // see if cell 2, edge 1 or cell 3, edge 3 have // been traversed. val1 = BitOps.checkBit(visitedData[2], 1); val2 = BitOps.checkBit(visitedData[3], 3); untraversed[1] = !(val1 | val2); } if (visitedData[0] == 0 && visitedData[2] == 0) { // none of the four edges of these cells have been // previously traversed. Easy. untraversed[2] = true; } else { // see if cell 0, edge 2 or cell 2, edge 0 have // been traversed. val1 = BitOps.checkBit(visitedData[0], 2); val2 = BitOps.checkBit(visitedData[2], 0); untraversed[2] = !(val1 | val2); } if (visitedData[0] == 0 && visitedData[1] == 0) { // none of the four edges of these cells have been // previously traversed. Easy. untraversed[3] = true; } else { // see if cell 0, edge 1 or cell 1, edge 3 have // been traversed. val1 = BitOps.checkBit(visitedData[0], 1); val2 = BitOps.checkBit(visitedData[1], 3); untraversed[3] = !(val1 | val2); } // which edge will you move across? previousTraceDirection = traceDirection; if (edges[0] && untraversed[0]) { traceDirection = 0; } else if (edges[1] && untraversed[1]) { traceDirection = 1; } else if (edges[2] && untraversed[2]) { traceDirection = 2; } else if (edges[3] && untraversed[3]) { traceDirection = 3; } else { traceDirection = -1; flag = false; } if (previousTraceDirection != traceDirection) { xCoord = west + (currentHalfCol / cols) * EWRange; yCoord = north - (currentHalfRow / rows) * NSRange; points.addPoint(xCoord, yCoord); } switch (traceDirection) { case 0: currentHalfCol += 1.0; temp1.setValue(rowVals[0], colVals[1], BitOps.setBit(visitedData[1], 2)); temp1.setValue(rowVals[1], colVals[1], BitOps.setBit(visitedData[3], 0)); break; case 1: currentHalfRow += 1.0; temp1.setValue(rowVals[1], colVals[0], BitOps.setBit(visitedData[2], 1)); temp1.setValue(rowVals[1], colVals[1], BitOps.setBit(visitedData[3], 3)); break; case 2: currentHalfCol -= 1.0; temp1.setValue(rowVals[0], colVals[0], BitOps.setBit(visitedData[0], 2)); temp1.setValue(rowVals[1], colVals[0], BitOps.setBit(visitedData[2], 0)); break; case 3: currentHalfRow -= 1.0; temp1.setValue(rowVals[0], colVals[0], BitOps.setBit(visitedData[0], 1)); temp1.setValue(rowVals[0], colVals[1], BitOps.setBit(visitedData[1], 3)); break; } numPoints++; if (numPoints > 1000000) { flag = false; } } while (flag); if (numPoints > 1) { // add the line to the shapefile. PolyLine line = new PolyLine(parts, points.getPointsArray()); output.addRecord(line); Object[] rowData = new Object[2]; rowData[0] = new Double(FID); rowData[1] = new Double(contourValue); writer.addRecord(rowData); } } } if (cancelOp) { cancelOperation(); return; } progress = (int)(100f * row / (rows - 1)); updateProgress("Loop 3 of 5:", progress); } for (col = 0; col < cols; col++) { row = rows - 1; z = DEM.getValue(row, col); if (z != noData) { z = baseContour + Math.floor(((z * zConvFactor) - baseContour) / contourInterval) * contourInterval; zN = DEM.getValue(row, col - 1); leftNeighbour = baseContour + Math.floor(((zN * zConvFactor) - baseContour) / contourInterval) * contourInterval; if (leftNeighbour != z && zN != noData) { contourValue = Math.max(z, leftNeighbour); currentHalfRow = row + 0.5; currentHalfCol = col - 0.5; traceDirection = -1; numPoints = 0; FID++; PointsList points = new PointsList(); flag = true; do { // Get the reclassed elevation data for the 2 x 2 // window, i.e. the window in Diagram 1 above. rowVals[0] = (int)Math.floor(currentHalfRow); rowVals[1] = (int)Math.ceil(currentHalfRow); colVals[0] = (int)Math.floor(currentHalfCol); colVals[1] = (int)Math.ceil(currentHalfCol); if (DEM.getValue(rowVals[0], colVals[0]) != noData) { elevClassData[0] = baseContour + Math.floor(((DEM.getValue(rowVals[0], colVals[0]) * zConvFactor) - baseContour) / contourInterval) * contourInterval; } else { elevClassData[0] = noData; } if (DEM.getValue(rowVals[0], colVals[1]) != noData) { elevClassData[1] = baseContour + Math.floor(((DEM.getValue(rowVals[0], colVals[1]) * zConvFactor) - baseContour) / contourInterval) * contourInterval; } else { elevClassData[1] = noData; } if (DEM.getValue(rowVals[1], colVals[0]) != noData) { elevClassData[2] = baseContour + Math.floor(((DEM.getValue(rowVals[1], colVals[0]) * zConvFactor) - baseContour) / contourInterval) * contourInterval; } else { elevClassData[2] = noData; } if (DEM.getValue(rowVals[1], colVals[1]) != noData) { elevClassData[3] = baseContour + Math.floor(((DEM.getValue(rowVals[1], colVals[1]) * zConvFactor) - baseContour) / contourInterval) * contourInterval; } else { elevClassData[3] = noData; } // Which cell boundaries in the 2 x 2 window are edges? edges = new boolean[4]; // edges array refers to the cell boundary edges // in Diagram 2 above. if (elevClassData[1] != elevClassData[3] && Math.min(elevClassData[1], elevClassData[3]) != noData) { edges[0] = true; } if (elevClassData[2] != elevClassData[3] && Math.min(elevClassData[2], elevClassData[3]) != noData) { edges[1] = true; } if (elevClassData[0] != elevClassData[2] && Math.min(elevClassData[0], elevClassData[2]) != noData) { edges[2] = true; } if (elevClassData[0] != elevClassData[1] && Math.min(elevClassData[0], elevClassData[1]) != noData) { edges[3] = true; } // Which cell boundaries have been visited before? visitedData = new int[4]; // vistedData array refers to the cell numbering // in Diagram 1 above but the data are bit arrays // with values assigned to cell edges as described in // Diagram 3. visitedData[0] = (int)temp1.getValue(rowVals[0], colVals[0]); // top-left cell visitedData[1] = (int)temp1.getValue(rowVals[0], colVals[1]); // top-right cell visitedData[2] = (int)temp1.getValue(rowVals[1], colVals[0]); // bottom-left cell visitedData[3] = (int)temp1.getValue(rowVals[1], colVals[1]); // bottom-right cell untraversed = new boolean[4]; // untraversed array refers to the cell boundary edges // in Diagram 2 above. if (visitedData[1] == 0 && visitedData[3] == 0) { // none of the four edges of these cells have been // previously traversed. Easy. untraversed[0] = true; } else { // see if cell 1, edge 2 or cell 3, edge 0 have // been traversed. val1 = BitOps.checkBit(visitedData[1], 2); val2 = BitOps.checkBit(visitedData[3], 0); untraversed[0] = !(val1 | val2); } if (visitedData[2] == 0 && visitedData[3] == 0) { // none of the four edges of these cells have been // previously traversed. Easy. untraversed[1] = true; } else { // see if cell 2, edge 1 or cell 3, edge 3 have // been traversed. val1 = BitOps.checkBit(visitedData[2], 1); val2 = BitOps.checkBit(visitedData[3], 3); untraversed[1] = !(val1 | val2); } if (visitedData[0] == 0 && visitedData[2] == 0) { // none of the four edges of these cells have been // previously traversed. Easy. untraversed[2] = true; } else { // see if cell 0, edge 2 or cell 2, edge 0 have // been traversed. val1 = BitOps.checkBit(visitedData[0], 2); val2 = BitOps.checkBit(visitedData[2], 0); untraversed[2] = !(val1 | val2); } if (visitedData[0] == 0 && visitedData[1] == 0) { // none of the four edges of these cells have been // previously traversed. Easy. untraversed[3] = true; } else { // see if cell 0, edge 1 or cell 1, edge 3 have // been traversed. val1 = BitOps.checkBit(visitedData[0], 1); val2 = BitOps.checkBit(visitedData[1], 3); untraversed[3] = !(val1 | val2); } // which edge will you move across? previousTraceDirection = traceDirection; if (edges[0] && untraversed[0]) { traceDirection = 0; } else if (edges[1] && untraversed[1]) { traceDirection = 1; } else if (edges[2] && untraversed[2]) { traceDirection = 2; } else if (edges[3] && untraversed[3]) { traceDirection = 3; } else { traceDirection = -1; flag = false; } if (previousTraceDirection != traceDirection) { xCoord = west + (currentHalfCol / cols) * EWRange; yCoord = north - (currentHalfRow / rows) * NSRange; points.addPoint(xCoord, yCoord); } switch (traceDirection) { case 0: currentHalfCol += 1.0; temp1.setValue(rowVals[0], colVals[1], BitOps.setBit(visitedData[1], 2)); temp1.setValue(rowVals[1], colVals[1], BitOps.setBit(visitedData[3], 0)); break; case 1: currentHalfRow += 1.0; temp1.setValue(rowVals[1], colVals[0], BitOps.setBit(visitedData[2], 1)); temp1.setValue(rowVals[1], colVals[1], BitOps.setBit(visitedData[3], 3)); break; case 2: currentHalfCol -= 1.0; temp1.setValue(rowVals[0], colVals[0], BitOps.setBit(visitedData[0], 2)); temp1.setValue(rowVals[1], colVals[0], BitOps.setBit(visitedData[2], 0)); break; case 3: currentHalfRow -= 1.0; temp1.setValue(rowVals[0], colVals[0], BitOps.setBit(visitedData[0], 1)); temp1.setValue(rowVals[0], colVals[1], BitOps.setBit(visitedData[1], 3)); break; } numPoints++; if (numPoints > 1000000) { flag = false; } } while (flag); if (numPoints > 1) { // add the line to the shapefile. PolyLine line = new PolyLine(parts, points.getPointsArray()); output.addRecord(line); Object[] rowData = new Object[2]; rowData[0] = new Double(FID); rowData[1] = new Double(contourValue); writer.addRecord(rowData); } } } if (cancelOp) { cancelOperation(); return; } progress = (int)(100f * col / (cols - 1)); updateProgress("Loop 4 of 5:", progress); } for (row = 0; row < rows; row++) { for (col = 0; col < cols; col++) { z = DEM.getValue(row, col); if (z != noData) { z = baseContour + Math.floor(((z * zConvFactor) - baseContour) / contourInterval) * contourInterval; zN = DEM.getValue(row - 1, col); topNeighbour = baseContour + Math.floor(((zN * zConvFactor) - baseContour) / contourInterval) * contourInterval; value = DEM.getValue(row, col - 1); leftNeighbour = baseContour + Math.floor(((value * zConvFactor) - baseContour) / contourInterval) * contourInterval; if ((topNeighbour != z && zN != noData) || (leftNeighbour != z && value != noData)) { contourValue = Math.max(z, topNeighbour); currentHalfRow = row - 0.5; currentHalfCol = col - 0.5; traceDirection = -1; numPoints = 0; FID++; PointsList points = new PointsList(); flag = true; do { // Get the reclassed elevation data for the 2 x 2 // window, i.e. the window in Diagram 1 above. rowVals[0] = (int) Math.floor(currentHalfRow); rowVals[1] = (int) Math.ceil(currentHalfRow); colVals[0] = (int) Math.floor(currentHalfCol); colVals[1] = (int) Math.ceil(currentHalfCol); if (DEM.getValue(rowVals[0], colVals[0]) != noData) { elevClassData[0] = baseContour + Math.floor(((DEM.getValue(rowVals[0], colVals[0]) * zConvFactor) - baseContour) / contourInterval) * contourInterval; } else { elevClassData[0] = noData; } if (DEM.getValue(rowVals[0], colVals[1]) != noData) { elevClassData[1] = baseContour + Math.floor(((DEM.getValue(rowVals[0], colVals[1]) * zConvFactor) - baseContour) / contourInterval) * contourInterval; } else { elevClassData[1] = noData; } if (DEM.getValue(rowVals[1], colVals[0]) != noData) { elevClassData[2] = baseContour + Math.floor(((DEM.getValue(rowVals[1], colVals[0]) * zConvFactor) - baseContour) / contourInterval) * contourInterval; } else { elevClassData[2] = noData; } if (DEM.getValue(rowVals[1], colVals[1]) != noData) { elevClassData[3] = baseContour + Math.floor(((DEM.getValue(rowVals[1], colVals[1]) * zConvFactor) - baseContour) / contourInterval) * contourInterval; } else { elevClassData[3] = noData; } // Which cell boundaries in the 2 x 2 window are edges? edges = new boolean[4]; // edges array refers to the cell boundary edges // in Diagram 2 above. if (elevClassData[1] != elevClassData[3] && Math.min(elevClassData[1], elevClassData[3]) != noData) { edges[0] = true; } if (elevClassData[2] != elevClassData[3] && Math.min(elevClassData[2], elevClassData[3]) != noData) { edges[1] = true; } if (elevClassData[0] != elevClassData[2] && Math.min(elevClassData[0], elevClassData[2]) != noData) { edges[2] = true; } if (elevClassData[0] != elevClassData[1] && Math.min(elevClassData[0], elevClassData[1]) != noData) { edges[3] = true; } // Which cell boundaries have been visited before? visitedData = new int[4]; // vistedData array refers to the cell numbering // in Diagram 1 above but the data are bit arrays // with values assigned to cell edges as described in // Diagram 3. visitedData[0] = (int) temp1.getValue(rowVals[0], colVals[0]); // top-left cell visitedData[1] = (int) temp1.getValue(rowVals[0], colVals[1]); // top-right cell visitedData[2] = (int) temp1.getValue(rowVals[1], colVals[0]); // bottom-left cell visitedData[3] = (int) temp1.getValue(rowVals[1], colVals[1]); // bottom-right cell untraversed = new boolean[4]; // untraversed array refers to the cell boundary edges // in Diagram 2 above. if (visitedData[1] == 0 && visitedData[3] == 0) { // none of the four edges of these cells have been // previously traversed. Easy. untraversed[0] = true; } else { // see if cell 1, edge 2 or cell 3, edge 0 have // been traversed. val1 = BitOps.checkBit(visitedData[1], 2); val2 = BitOps.checkBit(visitedData[3], 0); untraversed[0] = !(val1 | val2); } if (visitedData[2] == 0 && visitedData[3] == 0) { // none of the four edges of these cells have been // previously traversed. Easy. untraversed[1] = true; } else { // see if cell 2, edge 1 or cell 3, edge 3 have // been traversed. val1 = BitOps.checkBit(visitedData[2], 1); val2 = BitOps.checkBit(visitedData[3], 3); untraversed[1] = !(val1 | val2); } if (visitedData[0] == 0 && visitedData[2] == 0) { // none of the four edges of these cells have been // previously traversed. Easy. untraversed[2] = true; } else { // see if cell 0, edge 2 or cell 2, edge 0 have // been traversed. val1 = BitOps.checkBit(visitedData[0], 2); val2 = BitOps.checkBit(visitedData[2], 0); untraversed[2] = !(val1 | val2); } if (visitedData[0] == 0 && visitedData[1] == 0) { // none of the four edges of these cells have been // previously traversed. Easy. untraversed[3] = true; } else { // see if cell 0, edge 1 or cell 1, edge 3 have // been traversed. val1 = BitOps.checkBit(visitedData[0], 1); val2 = BitOps.checkBit(visitedData[1], 3); untraversed[3] = !(val1 | val2); } // which edge will you move across? previousTraceDirection = traceDirection; if (edges[0] && untraversed[0]) { traceDirection = 0; } else if (edges[1] && untraversed[1]) { traceDirection = 1; } else if (edges[2] && untraversed[2]) { traceDirection = 2; } else if (edges[3] && untraversed[3]) { traceDirection = 3; } else { traceDirection = -1; flag = false; } if (previousTraceDirection != traceDirection) { xCoord = west + (currentHalfCol / cols) * EWRange; yCoord = north - (currentHalfRow / rows) * NSRange; points.addPoint(xCoord, yCoord); } switch (traceDirection) { case 0: currentHalfCol += 1.0; temp1.setValue(rowVals[0], colVals[1], BitOps.setBit(visitedData[1], 2)); temp1.setValue(rowVals[1], colVals[1], BitOps.setBit(visitedData[3], 0)); break; case 1: currentHalfRow += 1.0; temp1.setValue(rowVals[1], colVals[0], BitOps.setBit(visitedData[2], 1)); temp1.setValue(rowVals[1], colVals[1], BitOps.setBit(visitedData[3], 3)); break; case 2: currentHalfCol -= 1.0; temp1.setValue(rowVals[0], colVals[0], BitOps.setBit(visitedData[0], 2)); temp1.setValue(rowVals[1], colVals[0], BitOps.setBit(visitedData[2], 0)); break; case 3: currentHalfRow -= 1.0; temp1.setValue(rowVals[0], colVals[0], BitOps.setBit(visitedData[0], 1)); temp1.setValue(rowVals[0], colVals[1], BitOps.setBit(visitedData[1], 3)); break; } numPoints++; if (numPoints > 1000000) { flag = false; } } while (flag); if (numPoints > 1) { // add the line to the shapefile. PolyLine line = new PolyLine(parts, points.getPointsArray()); output.addRecord(line); Object[] rowData = new Object[2]; rowData[0] = new Double(FID); rowData[1] = new Double(contourValue); writer.addRecord(rowData); } } } } if (cancelOp) { cancelOperation(); return; } progress = (int)(100f * row / (rows - 1)); updateProgress("Loop 5 of 5:", progress); } DEM.close(); temp1.close(); output.write(); writer.write(); // returning a header file string displays the image. returnData(outputFileName); } catch (OutOfMemoryError oe) { myHost.showFeedback("An out-of-memory error has occurred during operation."); } catch (Exception e) { myHost.showFeedback("An error has occurred during operation. See log file for details."); myHost.logException("Error in " + getDescriptiveName(), e); } finally { updateProgress("Progress: ", 0); // tells the main application that this process is completed. amIActive = false; myHost.pluginComplete(); } } // // This method is only used during testing. // public static void main(String[] args) { // args = new String[5]; // args[0] = "/Users/johnlindsay/Documents/Data/Waterloo DEM.dep"; // args[1] = "/Users/johnlindsay/Documents/Data/tmp1.shp"; // args[2] = "10.0"; // args[3] = "0.0"; // args[4] = "1.0"; // // Contour cont = new Contour(); // cont.setArgs(args); // cont.run(); // } }