/* * Copyright (C) 2011-2012 Dr. John Lindsay <jlindsay@uoguelph.ca> * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ package plugins; import java.util.Date; import java.util.List; import whitebox.geospatialfiles.WhiteboxRaster; import whitebox.geospatialfiles.LASReader; import whitebox.geospatialfiles.LASReader.PointRecord; import whitebox.interfaces.WhiteboxPluginHost; import whitebox.interfaces.WhiteboxPlugin; import whitebox.structures.KdTree; import java.io.*; /** * This tool can be used to interpolate a regular grid raster from a point cloud LiDAR dataset where each grid cell contains the point density within a user-specified radius. * * @author Dr. John Lindsay email: jlindsay@uoguelph.ca */ public class LiDAR_PointDensity implements WhiteboxPlugin { private WhiteboxPluginHost myHost = null; private String[] args; /** * Used to retrieve the plugin tool's name. This is a short, unique name * containing no spaces. * * @return String containing plugin name. */ @Override public String getName() { return "LiDAR_PointDensity"; } /** * Used to retrieve the plugin tool's descriptive name. This can be a longer * name (containing spaces) and is used in the interface to list the tool. * * @return String containing the plugin descriptive name. */ @Override public String getDescriptiveName() { return "Point Density (LiDAR)"; } /** * Used to retrieve a short description of what the plugin tool does. * * @return String containing the plugin's description. */ @Override public String getToolDescription() { return "Calculates the spatial pattern of point density fore a LiDAR data set."; } /** * Used to identify which toolboxes this plugin tool should be listed in. * * @return Array of Strings. */ @Override public String[] getToolbox() { String[] ret = {"LidarTools"}; return ret; } /** * Sets the WhiteboxPluginHost to which the plugin tool is tied. This is the * class that the plugin will send all feedback messages, progress updates, * and return objects. * * @param host The WhiteboxPluginHost that called the plugin tool. */ @Override public void setPluginHost(WhiteboxPluginHost host) { myHost = host; } /** * Used to communicate feedback pop-up messages between a plugin tool and * the main Whitebox user-interface. * * @param feedback String containing the text to display. */ private void showFeedback(String message) { if (myHost != null) { myHost.showFeedback(message); } else { System.out.println(message); } } /** * Used to communicate a return object from a plugin tool to the main * Whitebox user-interface. * * @return Object, such as an output WhiteboxRaster. */ private void returnData(Object ret) { if (myHost != null) { myHost.returnData(ret); } } private int previousProgress = 0; private String previousProgressLabel = ""; /** * Used to communicate a progress update between a plugin tool and the main * Whitebox user interface. * * @param progressLabel A String to use for the progress label. * @param progress Float containing the progress value (between 0 and 100). */ private void updateProgress(String progressLabel, int progress) { if (myHost != null && ((progress != previousProgress) || (!progressLabel.equals(previousProgressLabel)))) { myHost.updateProgress(progressLabel, progress); } previousProgress = progress; previousProgressLabel = progressLabel; } /** * Used to communicate a progress update between a plugin tool and the main * Whitebox user interface. * * @param progress Float containing the progress value (between 0 and 100). */ private void updateProgress(int progress) { if (myHost != null && progress != previousProgress) { myHost.updateProgress(progress); } previousProgress = progress; } /** * Sets the arguments (parameters) used by the plugin. * * @param args An array of string arguments. */ @Override public void setArgs(String[] args) { this.args = args.clone(); } private boolean cancelOp = false; /** * Used to communicate a cancel operation from the Whitebox GUI. * * @param cancel Set to true if the plugin should be canceled. */ @Override public void setCancelOp(boolean cancel) { cancelOp = cancel; } private void cancelOperation() { showFeedback("Operation cancelled."); updateProgress("Progress: ", 0); } private boolean amIActive = false; /** * Used by the Whitebox GUI to tell if this plugin is still running. * * @return a boolean describing whether or not the plugin is actively being * used. */ @Override public boolean isActive() { return amIActive; } /** * Used to execute this plugin tool. */ @Override public void run() { /* The problem with this algorithm is that the implementation of the * k-d tree used here only allows you to return the n-closest neighbours * and does not allow you to search for points that are within a specified * distance. This will introduce an inaccuracy in point density estimates. */ amIActive = true; String inputFilesString = null; String[] pointFiles; String outputHeader = null; int row, col; int nrows, ncols; double x, y; double z = 0; int a, i; int progress = 0; int numPoints = 0; double maxDist = Double.POSITIVE_INFINITY; double minX = Double.POSITIVE_INFINITY; double maxX = Double.NEGATIVE_INFINITY; double minY = Double.POSITIVE_INFINITY; double maxY = Double.NEGATIVE_INFINITY; double north, south, east, west; double resolution = 1; String str1 = null; FileWriter fw = null; BufferedWriter bw = null; PrintWriter out = null; List<KdTree.Entry<Double>> results; double noData = -32768; double northing, easting; String returnNumberToInterpolate = "all points"; String suffix = ""; boolean excludeNeverClassified = false; boolean excludeUnclassified = false; boolean excludeBareGround = false; boolean excludeLowVegetation = false; boolean excludeMediumVegetation = false; boolean excludeHighVegetation = false; boolean excludeBuilding = false; boolean excludeLowPoint = false; boolean excludeModelKeyPoint = false; boolean excludeWater = false; // get the arguments if (args.length <= 0) { showFeedback("Plugin parameters have not been set."); return; } inputFilesString = args[0]; suffix = args[1].trim(); returnNumberToInterpolate = args[2].toLowerCase(); resolution = Double.parseDouble(args[3]); excludeNeverClassified = Boolean.parseBoolean(args[4]); excludeUnclassified = Boolean.parseBoolean(args[5]); excludeBareGround = Boolean.parseBoolean(args[6]); excludeLowVegetation = Boolean.parseBoolean(args[7]); excludeMediumVegetation = Boolean.parseBoolean(args[8]); excludeHighVegetation = Boolean.parseBoolean(args[9]); excludeBuilding = Boolean.parseBoolean(args[10]); excludeLowPoint = Boolean.parseBoolean(args[11]); excludeModelKeyPoint = Boolean.parseBoolean(args[12]); excludeWater = Boolean.parseBoolean(args[13]); // check to see that the inputHeader and outputHeader are not null. if ((inputFilesString.length() <= 0)) { showFeedback("One or more of the input parameters have not been set properly."); return; } try { boolean[] classValuesToExclude = new boolean[32]; // there can be up to 32 different classes in future versions if (excludeNeverClassified) { classValuesToExclude[0] = true; } if (excludeUnclassified) { classValuesToExclude[1] = true; } if (excludeBareGround) { classValuesToExclude[2] = true; } if (excludeLowVegetation) { classValuesToExclude[3] = true; } if (excludeMediumVegetation) { classValuesToExclude[4] = true; } if (excludeHighVegetation) { classValuesToExclude[5] = true; } if (excludeBuilding) { classValuesToExclude[6] = true; } if (excludeLowPoint) { classValuesToExclude[7] = true; } if (excludeModelKeyPoint) { classValuesToExclude[8] = true; } if (excludeWater) { classValuesToExclude[9] = true; } pointFiles = inputFilesString.split(";"); int numPointFiles = pointFiles.length; long numPointsInFile = 0; maxDist = (resolution * 2) * (resolution * 2); // actually squared PointRecord point; double[] entry; for (int j = 0; j < numPointFiles; j++) { LASReader las = new LASReader(pointFiles[j]); progress = (int)((j + 1) * 100d / numPointFiles); updateProgress("Loop " + (j + 1) + " of " + numPointFiles + " Reading point data:", progress); numPointsInFile = las.getNumPointRecords(); // first count how many valid points there are. numPoints = 0; for (a = 0; a < las.getNumPointRecords(); a++) { point = las.getPointRecord(a); if (returnNumberToInterpolate.equals("all points")) { if (!point.isPointWithheld() && !(classValuesToExclude[point.getClassification()])) { numPoints++; } } else if (returnNumberToInterpolate.equals("first return")) { if (!point.isPointWithheld() && !(classValuesToExclude[point.getClassification()]) && point.getReturnNumber() == 1) { numPoints++; } } else { // if (returnNumberToInterpolate.equals("last return")) { if (!point.isPointWithheld() && !(classValuesToExclude[point.getClassification()]) && point.getReturnNumber() == point.getNumberOfReturns()) { numPoints++; } } } // now read the valid points into the k-dimensional tree. minX = Double.POSITIVE_INFINITY; maxX = Double.NEGATIVE_INFINITY; minY = Double.POSITIVE_INFINITY; maxY = Double.NEGATIVE_INFINITY; KdTree<Double> pointsTree = new KdTree.SqrEuclid<Double>(2, new Integer(numPoints)); // read the points in if (returnNumberToInterpolate.equals("all points")) { for (a = 0; a < numPointsInFile; a++) { point = las.getPointRecord(a); if (!point.isPointWithheld() && !(classValuesToExclude[point.getClassification()])) { x = point.getX(); y = point.getY(); z = point.getZ(); entry = new double[]{y, x}; pointsTree.addPoint(entry, z); if (x < minX) { minX = x; } if (x > maxX) { maxX = x; } if (y < minY) { minY = y; } if (y > maxY) { maxY = y; } } progress = (int) (100d * (a + 1) / numPointsInFile); if ((progress % 2) == 0) { updateProgress("Reading point data:", progress); } } } else if (returnNumberToInterpolate.equals("first return")) { for (a = 0; a < numPointsInFile; a++) { point = las.getPointRecord(a); if (!point.isPointWithheld() && !(classValuesToExclude[point.getClassification()]) && point.getReturnNumber() == 1) { x = point.getX(); y = point.getY(); z = point.getZ(); entry = new double[]{y, x}; pointsTree.addPoint(entry, z); if (x < minX) { minX = x; } if (x > maxX) { maxX = x; } if (y < minY) { minY = y; } if (y > maxY) { maxY = y; } } progress = (int) (100d * (a + 1) / numPointsInFile); if ((progress % 2) == 0) { updateProgress("Reading point data:", progress); } } } else { // if (returnNumberToInterpolate.equals("last return")) { for (a = 0; a < numPointsInFile; a++) { point = las.getPointRecord(a); if (!point.isPointWithheld() && !(classValuesToExclude[point.getClassification()]) && point.getReturnNumber() == point.getNumberOfReturns()) { x = point.getX(); y = point.getY(); z = point.getZ(); entry = new double[]{y, x}; pointsTree.addPoint(entry, z); if (x < minX) { minX = x; } if (x > maxX) { maxX = x; } if (y < minY) { minY = y; } if (y > maxY) { maxY = y; } } progress = (int) (100d * (a + 1) / numPointsInFile); if ((progress % 2) == 0) { updateProgress("Reading point data:", progress); } } } outputHeader = pointFiles[j].replace(".las", suffix + ".dep"); // see if the output files already exist, and if so, delete them. if ((new File(outputHeader)).exists()) { (new File(outputHeader)).delete(); (new File(outputHeader.replace(".dep", ".tas"))).delete(); } // What are north, south, east, and west and how many rows and // columns should there be? west = minX - 0.5 * resolution; north = maxY + 0.5 * resolution; nrows = (int)(Math.ceil((north - minY) / resolution)); ncols = (int)(Math.ceil((maxX - west) / resolution)); south = north - nrows * resolution; east = west + ncols * resolution; // create the whitebox header file. fw = new FileWriter(outputHeader, false); bw = new BufferedWriter(fw); out = new PrintWriter(bw, true); str1 = "Min:\t" + Double.toString(Integer.MAX_VALUE); out.println(str1); str1 = "Max:\t" + Double.toString(Integer.MIN_VALUE); out.println(str1); str1 = "North:\t" + Double.toString(north); out.println(str1); str1 = "South:\t" + Double.toString(south); out.println(str1); str1 = "East:\t" + Double.toString(east); out.println(str1); str1 = "West:\t" + Double.toString(west); out.println(str1); str1 = "Cols:\t" + Integer.toString(ncols); out.println(str1); str1 = "Rows:\t" + Integer.toString(nrows); out.println(str1); str1 = "Data Type:\t" + "float"; out.println(str1); str1 = "Z Units:\t" + "not specified"; out.println(str1); str1 = "XY Units:\t" + "not specified"; out.println(str1); str1 = "Projection:\t" + "not specified"; out.println(str1); str1 = "Data Scale:\tcontinuous"; out.println(str1); str1 = "Preferred Palette:\t" + "spectrum.pal"; out.println(str1); str1 = "NoData:\t" + noData; out.println(str1); if (java.nio.ByteOrder.nativeOrder() == java.nio.ByteOrder.LITTLE_ENDIAN) { str1 = "Byte Order:\t" + "LITTLE_ENDIAN"; } else { str1 = "Byte Order:\t" + "BIG_ENDIAN"; } out.println(str1); out.close(); // Create the whitebox raster object. WhiteboxRaster image = new WhiteboxRaster(outputHeader, "rw"); int numPointsToUse = 10; int numPointsInArea = 0; boolean flag = false; int maxIteration = 20; int k = 0; double halfResolution = resolution / 2; double area = Math.PI * maxDist; // maxDist is already the squared radius for (row = 0; row < nrows; row++) { for (col = 0; col < ncols; col++) { easting = (col * resolution) + (west + halfResolution); northing = (north - halfResolution) - (row * resolution); entry = new double[]{northing, easting}; // keep increasing the numPointsToUse, until you have a point // that is at a greater distance than maxDist. numPointsToUse = 10; flag = false; k = 0; do { k++; results = pointsTree.nearestNeighbor(entry, numPointsToUse, true); for (i = 0; i < results.size(); i++) { if (results.get(i).distance > maxDist) { flag = true; } } if (!flag) { numPointsToUse = numPointsToUse * 2; } } while (!flag && k < maxIteration); // how many points are within the radius? numPointsInArea = 0; for (i = 0; i < results.size(); i++) { if (results.get(i).distance <= maxDist) { numPointsInArea++; } } image.setValue(row, col, numPointsInArea / area); } if (cancelOp) { cancelOperation(); return; } progress = (int) (100f * row / (nrows - 1)); updateProgress("Calculating point density:", progress); } image.addMetadataEntry("Created by the " + getDescriptiveName() + " tool."); image.addMetadataEntry("Created on " + new Date()); image.close(); } returnData(pointFiles[0].replace(".las", suffix + ".dep")); } catch (OutOfMemoryError oe) { myHost.showFeedback("An out-of-memory error has occurred during operation."); } catch (Exception e) { myHost.showFeedback("An error has occurred during operation. See log file for details."); myHost.logException("Error in " + getDescriptiveName(), e); } finally { updateProgress("Progress: ", 0); // tells the main application that this process is completed. amIActive = false; myHost.pluginComplete(); } } // // this is only used for debugging the tool // public static void main(String[] args) { // LiDAR_PointDensity nn = new LiDAR_PointDensity(); // args = new String[17]; // args[0] = "/Users/johnlindsay/Documents/Data/u_5565073175.las"; // //args[0] = "/Users/johnlindsay/Documents/Data/u_5565073250.las"; // args[1] = " last return intensity"; // args[2] = "intensity"; // args[3] = "last return"; // args[4] = "4"; // args[5] = "1"; // nn.setArgs(args); // nn.run(); // // } }