/* * Copyright (C) 2013 Dr. John Lindsay <jlindsay@uoguelph.ca> * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ package plugins; import java.util.Date; import whitebox.geospatialfiles.WhiteboxRaster; import whitebox.interfaces.WhiteboxPlugin; import whitebox.interfaces.WhiteboxPluginHost; /** * This tool can be used to calculate the downslope index described by Hjerdt et al (2004). * * @author Dr. John Lindsay email: jlindsay@uoguelph.ca */ public class DownslopeIndex implements WhiteboxPlugin { private WhiteboxPluginHost myHost = null; private String[] args; // Constants private static final double LnOf2 = 0.693147180559945; /** * Used to retrieve the plugin tool's name. This is a short, unique name * containing no spaces. * * @return String containing plugin name. */ @Override public String getName() { return "DownslopeIndex"; } /** * Used to retrieve the plugin tool's descriptive name. This can be a longer * name (containing spaces) and is used in the interface to list the tool. * * @return String containing the plugin descriptive name. */ @Override public String getDescriptiveName() { return "Downslope Index"; } /** * Used to retrieve a short description of what the plugin tool does. * * @return String containing the plugin's description. */ @Override public String getToolDescription() { return "Calculates the downslope index of Hjerdt et al. (WRR 2004)"; } /** * Used to identify which toolboxes this plugin tool should be listed in. * * @return Array of Strings. */ @Override public String[] getToolbox() { String[] ret = {"FlowpathTAs", "HydroTools"}; return ret; } /** * Sets the WhiteboxPluginHost to which the plugin tool is tied. This is the * class that the plugin will send all feedback messages, progress updates, * and return objects. * * @param host The WhiteboxPluginHost that called the plugin tool. */ @Override public void setPluginHost(WhiteboxPluginHost host) { myHost = host; } /** * Used to communicate feedback pop-up messages between a plugin tool and * the main Whitebox user-interface. * * @param feedback String containing the text to display. */ private void showFeedback(String message) { if (myHost != null) { myHost.showFeedback(message); } else { System.out.println(message); } } /** * Used to communicate a return object from a plugin tool to the main * Whitebox user-interface. * * @return Object, such as an output WhiteboxRaster. */ private void returnData(Object ret) { if (myHost != null) { myHost.returnData(ret); } } private int previousProgress = 0; private String previousProgressLabel = ""; /** * Used to communicate a progress update between a plugin tool and the main * Whitebox user interface. * * @param progressLabel A String to use for the progress label. * @param progress Float containing the progress value (between 0 and 100). */ private void updateProgress(String progressLabel, int progress) { if (myHost != null && ((progress != previousProgress) || (!progressLabel.equals(previousProgressLabel)))) { myHost.updateProgress(progressLabel, progress); } previousProgress = progress; previousProgressLabel = progressLabel; } /** * Used to communicate a progress update between a plugin tool and the main * Whitebox user interface. * * @param progress Float containing the progress value (between 0 and 100). */ private void updateProgress(int progress) { if (myHost != null && progress != previousProgress) { myHost.updateProgress(progress); } previousProgress = progress; } /** * Sets the arguments (parameters) used by the plugin. * * @param args An array of string arguments. */ @Override public void setArgs(String[] args) { this.args = args.clone(); } private boolean cancelOp = false; /** * Used to communicate a cancel operation from the Whitebox GUI. * * @param cancel Set to true if the plugin should be canceled. */ @Override public void setCancelOp(boolean cancel) { cancelOp = cancel; } private void cancelOperation() { showFeedback("Operation cancelled."); updateProgress("Progress: ", 0); } private boolean amIActive = false; /** * Used by the Whitebox GUI to tell if this plugin is still running. * * @return a boolean describing whether or not the plugin is actively being * used. */ @Override public boolean isActive() { return amIActive; } /** * Used to execute this plugin tool. */ @Override public void run() { amIActive = true; String pointerHeader, DEMHeader, outputHeader; int row, col, x, y; int progress; int c; int[] dX = new int[]{1, 1, 1, 0, -1, -1, -1, 0}; int[] dY = new int[]{-1, 0, 1, 1, 1, 0, -1, -1}; boolean flag; double flowDir, flowLength, flowLengthThroughCell; double zSt, zCurrent, zLastCell; double rad2Deg = 180.0 / Math.PI; if (args.length <= 0) { showFeedback("Plugin parameters have not been set."); return; } pointerHeader = args[0]; DEMHeader = args[1]; outputHeader = args[2]; double d = Double.parseDouble(args[3]); if (d <= 0) { showFeedback("The vertical drop parameter must be set to a positive numerical value."); return; } String outputType = args[4].toLowerCase().trim(); // check to see that the inputHeader and outputHeader are not null. if (pointerHeader.isEmpty() || DEMHeader.isEmpty() || outputHeader.isEmpty()) { showFeedback("One or more of the input parameters have not been set properly."); return; } try { WhiteboxRaster pointer = new WhiteboxRaster(pointerHeader, "r"); int rows = pointer.getNumberRows(); int cols = pointer.getNumberColumns(); double noData = pointer.getNoDataValue(); double gridResX = pointer.getCellSizeX(); double gridResY = pointer.getCellSizeY(); double diagGridRes = Math.sqrt(gridResX * gridResX + gridResY * gridResY); double[] gridLengths = new double[]{diagGridRes, gridResX, diagGridRes, gridResY, diagGridRes, gridResX, diagGridRes, gridResY}; WhiteboxRaster dem = new WhiteboxRaster(DEMHeader, "r"); if (dem.getNumberColumns() != cols || dem.getNumberRows() != rows) { showFeedback("Each of the input images must have the same dimensions (i.e. rows and columns)."); return; } double demNoData = dem.getNoDataValue(); if (pointer.getXYUnits().toLowerCase().contains("deg") || dem.getXYUnits().toLowerCase().contains("deg")) { double p1 = 111412.84; // longitude calculation term 1 double p2 = -93.5; // longitude calculation term 2 double p3 = 0.118; // longitude calculation term 3 double lat = Math.toRadians((pointer.getNorth() - pointer.getSouth()) / 2.0); double longlen = (p1 * Math.cos(lat)) + (p2 * Math.cos(3 * lat)) + (p3 * Math.cos(5 * lat)); for (int i = 0;i < 8; i++) { gridLengths[i] = gridLengths[i] * longlen; } } WhiteboxRaster output = new WhiteboxRaster(outputHeader, "rw", pointerHeader, WhiteboxRaster.DataType.FLOAT, noData); output.setPreferredPalette("spectrum.pal"); output.setDataScale(WhiteboxRaster.DataScale.CONTINUOUS); switch (outputType) { case "tangent": for (row = 0; row < rows; row++) { for (col = 0; col < cols; col++) { if (pointer.getValue(row, col) != noData && dem.getValue(row, col) != demNoData) { zSt = dem.getValue(row, col); flag = false; x = col; y = row; flowLength = 0; do { zLastCell = dem.getValue(row, col); // find it's downslope neighbour flowDir = pointer.getValue(y, x); if (flowDir > 0) { // what's the flow direction as an int? c = (int) (Math.log(flowDir) / LnOf2); //move x and y accordingly x += dX[c]; y += dY[c]; zCurrent = dem.getValue(y, x); if (zCurrent != demNoData) { if ((zSt - zCurrent) < d) { flowLength += gridLengths[c]; } else { //interpolate the distance flowLengthThroughCell = gridLengths[c] * (zLastCell - (zSt - d)) / (zLastCell - zCurrent); flowLength += flowLengthThroughCell; output.setValue(row, col, d / flowLength); flag = true; } } else { if (flowLength > 0) { output.setValue(row, col, (zSt - zLastCell) / flowLength); } else { output.setValue(row, col, noData); } flag = true; } } else { // you've hit the edge or a pit cell. if (flowLength > 0) { output.setValue(row, col, (zSt - zLastCell) / flowLength); } else { output.setValue(row, col, noData); } flag = true; } } while (!flag); } } if (cancelOp) { cancelOperation(); return; } progress = (int) (100f * row / (rows - 1)); updateProgress(progress); } break; case "degrees": for (row = 0; row < rows; row++) { for (col = 0; col < cols; col++) { if (pointer.getValue(row, col) != noData && dem.getValue(row, col) != demNoData) { zSt = dem.getValue(row, col); flag = false; x = col; y = row; flowLength = 0; do { zLastCell = dem.getValue(row, col); // find it's downslope neighbour flowDir = pointer.getValue(y, x); if (flowDir > 0) { // what's the flow direction as an int? c = (int) (Math.log(flowDir) / LnOf2); //move x and y accordingly x += dX[c]; y += dY[c]; zCurrent = dem.getValue(y, x); if (zCurrent != demNoData) { if ((zSt - zCurrent) < d) { flowLength += gridLengths[c]; } else { //interpolate the distance flowLengthThroughCell = gridLengths[c] * (zLastCell - (zSt - d)) / (zLastCell - zCurrent); flowLength += flowLengthThroughCell; output.setValue(row, col, Math.atan(d / flowLength) * rad2Deg); flag = true; } } else { if (flowLength > 0) { output.setValue(row, col, Math.atan((zSt - zLastCell) / flowLength) * rad2Deg); } else { output.setValue(row, col, noData); } flag = true; } } else { // you've hit the edge or a pit cell. if (flowLength > 0) { output.setValue(row, col, Math.atan((zSt - zLastCell) / flowLength) * rad2Deg); } else { output.setValue(row, col, noData); } flag = true; } } while (!flag); } } if (cancelOp) { cancelOperation(); return; } progress = (int) (100f * row / (rows - 1)); updateProgress(progress); } break; case "radians": for (row = 0; row < rows; row++) { for (col = 0; col < cols; col++) { if (pointer.getValue(row, col) != noData && dem.getValue(row, col) != demNoData) { zSt = dem.getValue(row, col); flag = false; x = col; y = row; flowLength = 0; do { zLastCell = dem.getValue(row, col); // find it's downslope neighbour flowDir = pointer.getValue(y, x); if (flowDir > 0) { // what's the flow direction as an int? c = (int) (Math.log(flowDir) / LnOf2); //move x and y accordingly x += dX[c]; y += dY[c]; zCurrent = dem.getValue(y, x); if (zCurrent != demNoData) { if ((zSt - zCurrent) < d) { flowLength += gridLengths[c]; } else { //interpolate the distance flowLengthThroughCell = gridLengths[c] * (zLastCell - (zSt - d)) / (zLastCell - zCurrent); flowLength += flowLengthThroughCell; output.setValue(row, col, Math.atan(d / flowLength)); flag = true; } } else { if (flowLength > 0) { output.setValue(row, col, Math.atan((zSt - zLastCell) / flowLength)); } else { output.setValue(row, col, noData); } flag = true; } } else { // you've hit the edge or a pit cell. if (flowLength > 0) { output.setValue(row, col, Math.atan((zSt - zLastCell) / flowLength)); } else { output.setValue(row, col, noData); } flag = true; } } while (!flag); } } if (cancelOp) { cancelOperation(); return; } progress = (int) (100f * row / (rows - 1)); updateProgress(progress); } break; case "distance": for (row = 0; row < rows; row++) { for (col = 0; col < cols; col++) { if (pointer.getValue(row, col) != noData && dem.getValue(row, col) != demNoData) { zSt = dem.getValue(row, col); flag = false; x = col; y = row; flowLength = 0; do { zLastCell = dem.getValue(row, col); // find it's downslope neighbour flowDir = pointer.getValue(y, x); if (flowDir > 0) { // what's the flow direction as an int? c = (int) (Math.log(flowDir) / LnOf2); //move x and y accordingly x += dX[c]; y += dY[c]; zCurrent = dem.getValue(y, x); if (zCurrent != demNoData) { if ((zSt - zCurrent) < d) { flowLength += gridLengths[c]; } else { //interpolate the distance flowLengthThroughCell = gridLengths[c] * (zLastCell - (zSt - d)) / (zLastCell - zCurrent); flowLength += flowLengthThroughCell; output.setValue(row, col, flowLength); flag = true; } } else { if (flowLength > 0) { output.setValue(row, col, flowLength); } else { output.setValue(row, col, noData); } flag = true; } } else { // you've hit the edge or a pit cell. if (flowLength > 0) { output.setValue(row, col, flowLength); } else { output.setValue(row, col, noData); } flag = true; } } while (!flag); } } if (cancelOp) { cancelOperation(); return; } progress = (int) (100f * row / (rows - 1)); updateProgress(progress); } break; } output.addMetadataEntry("Created by the " + getDescriptiveName() + " tool."); output.addMetadataEntry("Created on " + new Date()); pointer.close(); dem.close(); output.close(); // returning a header file string displays the image. returnData(outputHeader); } catch (OutOfMemoryError oe) { myHost.showFeedback("An out-of-memory error has occurred during operation."); } catch (Exception e) { myHost.showFeedback("An error has occurred during operation. See log file for details."); myHost.logException("Error in " + getDescriptiveName(), e); } finally { updateProgress("Progress: ", 0); // tells the main application that this process is completed. amIActive = false; myHost.pluginComplete(); } } // /** // * This method is only used during testing. // */ // // this is only used for testing the tool // public static void main(String[] args) { // args = new String[5]; // args[0] = "/Users/johnlindsay/Documents/Data/SouthernOnt/tmp10.dep"; // args[1] = "/Users/johnlindsay/Documents/Data/SouthernOnt/tmp4.dep"; // args[2] = "/Users/johnlindsay/Documents/Data/SouthernOnt/tmp11.dep"; // args[3] = "5"; // args[4] = "distance"; // // DownslopeIndex di = new DownslopeIndex(); // di.setArgs(args); // di.run(); // // } }