/* * Copyright (C) 2014 Jan Seibert (jan.seibert@geo.uzh.ch) and * Marc Vis (marc.vis@geo.uzh.ch) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ package plugins; import java.util.ArrayList; import java.util.Date; import java.util.List; import whitebox.geospatialfiles.WhiteboxRaster; import whitebox.geospatialfiles.WhiteboxRasterBase; import whitebox.interfaces.WhiteboxPlugin; import whitebox.interfaces.WhiteboxPluginHost; /** * This tool can be used to calculate the elevation of each grid cell in a raster above the nearest stream cell, measured along the downslope flowpath. * @author Dr. John Lindsay email: jlindsay@uoguelph.ca */ public class ElevAboveCreek implements WhiteboxPlugin { private WhiteboxPluginHost myHost = null; private String[] args; class FlowCell { int rowIndex; int columnIndex; public FlowCell(int row, int col) { rowIndex = row; columnIndex = col; } } /** * Used to retrieve the plugin tool's name. This is a short, unique name containing no spaces. * @return String containing plugin name. */ @Override public String getName() { return "ElevAboveCreek"; } /** * Used to retrieve the plugin tool's descriptive name. This can be a longer name (containing spaces) and is used in the interface to list the tool. * @return String containing the plugin descriptive name. */ @Override public String getDescriptiveName() { return "Elevation Above Creek"; } /** * Used to retrieve a short description of what the plugin tool does. * @return String containing the plugin's description. */ @Override public String getToolDescription() { return "Calculates the elevation above creek."; } /** * Used to identify which toolboxes this plugin tool should be listed in. * @return Array of Strings. */ @Override public String[] getToolbox() { String[] ret = { "RelativeLandscapePosition" }; return ret; } /** * Sets the WhiteboxPluginHost to which the plugin tool is tied. This is the class * that the plugin will send all feedback messages, progress updates, and return objects. * @param host The WhiteboxPluginHost that called the plugin tool. */ @Override public void setPluginHost(WhiteboxPluginHost host) { myHost = host; } /** * Used to communicate feedback pop-up messages between a plugin tool and the main Whitebox user-interface. * @param feedback String containing the text to display. */ private void showFeedback(String message) { if (myHost != null) { myHost.showFeedback(message); } else { System.out.println(message); } } /** * Used to communicate a return object from a plugin tool to the main Whitebox user-interface. * @return Object, such as an output WhiteboxRaster. */ private void returnData(Object ret) { if (myHost != null) { myHost.returnData(ret); } } private int previousProgress = 0; private String previousProgressLabel = ""; /** * Used to communicate a progress update between a plugin tool and the main Whitebox user interface. * @param progressLabel A String to use for the progress label. * @param progress Float containing the progress value (between 0 and 100). */ private void updateProgress(String progressLabel, int progress) { if (myHost != null && ((progress != previousProgress) || (!progressLabel.equals(previousProgressLabel)))) { myHost.updateProgress(progressLabel, progress); } previousProgress = progress; previousProgressLabel = progressLabel; } /** * Used to communicate a progress update between a plugin tool and the main Whitebox user interface. * @param progress Float containing the progress value (between 0 and 100). */ private void updateProgress(int progress) { if (myHost != null && progress != previousProgress) { myHost.updateProgress(progress); } previousProgress = progress; } /** * Sets the arguments (parameters) used by the plugin. * @param args An array of string arguments. */ @Override public void setArgs(String[] args) { this.args = args.clone(); } private boolean cancelOp = false; /** * Used to communicate a cancel operation from the Whitebox GUI. * @param cancel Set to true if the plugin should be canceled. */ @Override public void setCancelOp(boolean cancel) { cancelOp = cancel; } private void cancelOperation() { showFeedback("Operation cancelled."); updateProgress("Progress: ", 0); } private boolean amIActive = false; /** * Used by the Whitebox GUI to tell if this plugin is still running. * @return a boolean describing whether or not the plugin is actively being used. */ @Override public boolean isActive() { return amIActive; } /** * Used to execute this plugin tool. */ @Override public void run() { amIActive = true; String demHeader = null; String creekHeader = null; String ttControlHeader = null; String eacOutputHeader = null; String dfcOutputHeader = null; String gtcOutputHeader = null; String ttpOutputHeader = null; WhiteboxRaster dem; WhiteboxRaster creek; WhiteboxRaster ttControl = null; WhiteboxRaster eacOutput; WhiteboxRaster dfcOutput; WhiteboxRaster gtcOutput; WhiteboxRaster ttpOutput; int numCols, numRows; double gridRes; boolean blnTTControl = true; int flowIndex; List<FlowCell> flowPath = new ArrayList<>(); int c; int x, y; int xn, yn; double p; int maxDirection; double grad, maxGrad; double deltaElev; double deltaXY; int radius; float maxRadius = 200; int maxX = 0, maxY = 0; double ttControlMean; int[] xd = new int[]{0, -1, -1, -1, 0, 1, 1, 1}; int[] yd = new int[]{-1, -1, 0, 1, 1, 1, 0, -1}; double[] dd = new double[]{1, Math.sqrt(2), 1, Math.sqrt(2), 1, Math.sqrt(2), 1, Math.sqrt(2)}; double noData; float progress = 0; if (args.length <= 0) { showFeedback("Plugin parameters have not been set."); return; } for (int i = 0; i < args.length; i++) { if (i == 0) { demHeader = args[i]; } else if (i == 1) { creekHeader = args[i]; } else if (i == 2) { ttControlHeader = args[i]; if (ttControlHeader.toLowerCase().contains("not specified")) { blnTTControl = false; } } else if (i == 3) { eacOutputHeader = args[i]; } else if (i == 4) { dfcOutputHeader = args[i]; } else if (i == 5) { gtcOutputHeader = args[i]; } else if (i == 6) { ttpOutputHeader = args[i]; } } // check to see that the inputHeader and outputHeader are not null. if ((demHeader == null) || (creekHeader == null) || (eacOutputHeader == null) || (dfcOutputHeader == null) || (gtcOutputHeader == null) || (ttpOutputHeader == null)) { showFeedback("One or more of the input parameters have not been set properly."); return; } try { dem = new WhiteboxRaster(demHeader, "r"); creek = new WhiteboxRaster(creekHeader, "r"); if (blnTTControl == true) { ttControl = new WhiteboxRaster(ttControlHeader, "r"); } numRows = dem.getNumberRows(); numCols = dem.getNumberColumns(); noData = dem.getNoDataValue(); gridRes = dem.getCellSizeX(); eacOutput = new WhiteboxRaster(eacOutputHeader, "rw", demHeader, WhiteboxRaster.DataType.FLOAT, 0); eacOutput.setPreferredPalette("blueyellow.pal"); eacOutput.setDataScale(WhiteboxRasterBase.DataScale.CONTINUOUS); eacOutput.setZUnits("dimensionless"); dfcOutput = new WhiteboxRaster(dfcOutputHeader, "rw", demHeader, WhiteboxRaster.DataType.FLOAT, 0); dfcOutput.setPreferredPalette("blueyellow.pal"); dfcOutput.setDataScale(WhiteboxRasterBase.DataScale.CONTINUOUS); dfcOutput.setZUnits("dimensionless"); gtcOutput = new WhiteboxRaster(gtcOutputHeader, "rw", demHeader, WhiteboxRaster.DataType.FLOAT, 0); gtcOutput.setPreferredPalette("blueyellow.pal"); gtcOutput.setDataScale(WhiteboxRasterBase.DataScale.CONTINUOUS); gtcOutput.setZUnits("dimensionless"); ttpOutput = new WhiteboxRaster(ttpOutputHeader, "rw", demHeader, WhiteboxRaster.DataType.FLOAT, 0); ttpOutput.setPreferredPalette("blueyellow.pal"); ttpOutput.setDataScale(WhiteboxRasterBase.DataScale.CONTINUOUS); ttpOutput.setZUnits("dimensionless"); // Initialize the output grids updateProgress("Loop 1 of 2:", 0); for (int row = 0; row < numRows; row++) { for (int col = 0; col < numCols; col++) { if (dem.getValue(row, col) != noData) { if (creek.getValue(row, col) <= 0) { eacOutput.setValue(row, col, -1048); } } else { eacOutput.setValue(row, col, noData); dfcOutput.setValue(row, col, noData); gtcOutput.setValue(row, col, noData); ttpOutput.setValue(row, col, noData); } } progress = (float) (100f * row / (numRows - 1)); updateProgress("Loop 1 of 2:", (int) progress); } updateProgress("Loop 2 of 2:", 0); for (int row = 0; row < numRows; row++) { for (int col = 0; col < numCols; col++) { // If the cell (a, b) hasn't been computed yet if (eacOutput.getValue(row, col) == -1048) { flowIndex = -1; flowPath = new ArrayList<>(); x = col; y = row; // While cell x, y hasn't been computed yet while (eacOutput.getValue(y, x) == -1048) { flowIndex = flowIndex + 1; // Add the cell to a list that keeps track of the flowPath that's being followed flowPath.add(new FlowCell(y, x)); p = dem.getValue(y, x); maxDirection = -1; maxGrad = 0; // For each of the neighbouring cells, find the cell with the maximum downslope gradient for (c = 0; c < 8; c++) { xn = x + xd[c]; yn = y + yd[c]; if (dem.getValue(yn, xn) != noData) { grad = (p - dem.getValue(yn, xn)) / (dd[c] * gridRes); if (grad > maxGrad) { maxGrad = grad; maxDirection = c; } } } if (maxDirection > -1) { // If a downslope direction has been found, we're ready x = x + xd[maxDirection]; y = y + yd[maxDirection]; } else { // else, start the radius search method radius = 1; do { for (int i = -radius; i <= radius; i++) { for (int j = -radius; j <= radius; j++) { if (Math.abs(i) > radius - 1 || Math.abs(j) > radius - 1) { xn = x + i; yn = y + j; if (dem.getValue(yn, xn) != noData && dem.getValue(yn, xn) < p) { grad = (p - dem.getValue(yn, xn)) / (Math.sqrt(i * i + j * j) * gridRes); if (grad > maxGrad) { maxGrad = grad; maxX = xn; maxY = yn; } } } } } radius = radius + 1; } while (maxGrad == 0 & radius <= maxRadius); if (maxGrad > 0) { x = maxX; y = maxY; } else { eacOutput.setValue(y, x, noData); dfcOutput.setValue(y, x, noData); gtcOutput.setValue(y, x, noData); ttpOutput.setValue(y, x, noData); } } } // Compute values for the current cell in the output grids if (eacOutput.getValue(y, x) == noData) { eacOutput.setValue(flowPath.get(flowIndex).rowIndex, flowPath.get(flowIndex).columnIndex, noData); dfcOutput.setValue(flowPath.get(flowIndex).rowIndex, flowPath.get(flowIndex).columnIndex, noData); gtcOutput.setValue(flowPath.get(flowIndex).rowIndex, flowPath.get(flowIndex).columnIndex, noData); ttpOutput.setValue(flowPath.get(flowIndex).rowIndex, flowPath.get(flowIndex).columnIndex, noData); } else { deltaElev = dem.getValue(flowPath.get(flowIndex).rowIndex, flowPath.get(flowIndex).columnIndex) - dem.getValue(y, x); deltaXY = Math.sqrt(Math.pow(flowPath.get(flowIndex).rowIndex - y, 2) + Math.pow(flowPath.get(flowIndex).columnIndex - x, 2)) * gridRes; eacOutput.setValue(flowPath.get(flowIndex).rowIndex, flowPath.get(flowIndex).columnIndex, eacOutput.getValue(y, x) + deltaElev); dfcOutput.setValue(flowPath.get(flowIndex).rowIndex, flowPath.get(flowIndex).columnIndex, dfcOutput.getValue(y, x) + deltaXY); gtcOutput.setValue(flowPath.get(flowIndex).rowIndex, flowPath.get(flowIndex).columnIndex, (gtcOutput.getValue(y, x) * dfcOutput.getValue(y, x) + deltaElev) / dfcOutput.getValue(flowPath.get(flowIndex).rowIndex, flowPath.get(flowIndex).columnIndex)); if (blnTTControl == false) { ttpOutput.setValue(flowPath.get(flowIndex).rowIndex, flowPath.get(flowIndex).columnIndex, ttpOutput.getValue(y, x) + Math.pow(deltaXY, 2) / deltaElev); } else { ttControlMean = (ttControl.getValue(y, x) + ttControl.getValue(flowPath.get(flowIndex).rowIndex, flowPath.get(flowIndex).columnIndex)) / 2; ttpOutput.setValue(flowPath.get(flowIndex).rowIndex, flowPath.get(flowIndex).columnIndex, ttpOutput.getValue(y, x) + Math.pow(deltaXY, 2) / (deltaElev * ttControlMean)); } } // Walk back the flowPath and compute the output values for each of the gridcells for (int i = flowIndex - 1; i >= 0; i--) { if (eacOutput.getValue(flowPath.get(i + 1).rowIndex, flowPath.get(i + 1).columnIndex) == noData) { eacOutput.setValue(flowPath.get(i).rowIndex, flowPath.get(i).columnIndex, noData); dfcOutput.setValue(flowPath.get(i).rowIndex, flowPath.get(i).columnIndex, noData); gtcOutput.setValue(flowPath.get(i).rowIndex, flowPath.get(i).columnIndex, noData); ttpOutput.setValue(flowPath.get(i).rowIndex, flowPath.get(i).columnIndex, noData); } else { deltaElev = dem.getValue(flowPath.get(i).rowIndex, flowPath.get(i).columnIndex) - dem.getValue(flowPath.get(i + 1).rowIndex, flowPath.get(i + 1).columnIndex); deltaXY = Math.sqrt(Math.pow(flowPath.get(i).rowIndex - flowPath.get(i + 1).rowIndex, 2) + Math.pow(flowPath.get(i).columnIndex - flowPath.get(i + 1).columnIndex, 2)) * gridRes; eacOutput.setValue(flowPath.get(i).rowIndex, flowPath.get(i).columnIndex, eacOutput.getValue(flowPath.get(i + 1).rowIndex, flowPath.get(i + 1).columnIndex) + deltaElev); dfcOutput.setValue(flowPath.get(i).rowIndex, flowPath.get(i).columnIndex, dfcOutput.getValue(flowPath.get(i + 1).rowIndex, flowPath.get(i + 1).columnIndex) + deltaXY); gtcOutput.setValue(flowPath.get(i).rowIndex, flowPath.get(i).columnIndex, (gtcOutput.getValue(flowPath.get(i + 1).rowIndex, flowPath.get(i + 1).columnIndex) * dfcOutput.getValue(flowPath.get(i + 1).rowIndex, flowPath.get(i + 1).columnIndex) + deltaElev) / dfcOutput.getValue(flowPath.get(i).rowIndex, flowPath.get(i).columnIndex)); if (blnTTControl == false) { ttpOutput.setValue(flowPath.get(i).rowIndex, flowPath.get(i).columnIndex, ttpOutput.getValue(flowPath.get(i + 1).rowIndex, flowPath.get(i + 1).columnIndex) + Math.pow(deltaXY, 2) / deltaElev); } else { ttControlMean = (ttControl.getValue(flowPath.get(i).rowIndex, flowPath.get(i).columnIndex) + ttControl.getValue(flowPath.get(i + 1).rowIndex, flowPath.get(i + 1).columnIndex)) / 2; ttpOutput.setValue(flowPath.get(i).rowIndex, flowPath.get(i).columnIndex, ttpOutput.getValue(flowPath.get(i + 1).rowIndex, flowPath.get(i + 1).columnIndex) + Math.pow(deltaXY, 2) / (deltaElev * ttControlMean)); } } } } } if (cancelOp) { cancelOperation(); return; } progress = (float) (100f * row / (numRows - 1)); updateProgress("Loop 2 of 2:", (int) progress); } eacOutput.addMetadataEntry("Created by the " + getDescriptiveName() + " tool."); eacOutput.addMetadataEntry("Created on " + new Date()); dfcOutput.addMetadataEntry("Created by the " + getDescriptiveName() + " tool."); dfcOutput.addMetadataEntry("Created on " + new Date()); gtcOutput.addMetadataEntry("Created by the " + getDescriptiveName() + " tool."); gtcOutput.addMetadataEntry("Created on " + new Date()); ttpOutput.addMetadataEntry("Created by the " + getDescriptiveName() + " tool."); ttpOutput.addMetadataEntry("Created on " + new Date()); dem.close(); creek.close(); if (blnTTControl == true) { ttControl.close(); } eacOutput.close(); dfcOutput.close(); gtcOutput.close(); ttpOutput.close(); // returning a header file string displays the image. returnData(eacOutputHeader); } catch (Exception e) { showFeedback(e.getMessage()); } finally { updateProgress("Progress: ", 0); // tells the main application that this process is completed. amIActive = false; myHost.pluginComplete(); } } }