package org.apache.lucene.index; /** * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import java.io.IOException; import java.util.Arrays; import org.apache.lucene.analysis.tokenattributes.CharTermAttribute; import org.apache.lucene.document.Fieldable; import org.apache.lucene.util.UnicodeUtil; import org.apache.lucene.util.RamUsageEstimator; import org.apache.lucene.util.SorterTemplate; final class TermsHashPerField extends InvertedDocConsumerPerField { final TermsHashConsumerPerField consumer; final TermsHashPerField nextPerField; final TermsHashPerThread perThread; final DocumentsWriter.DocState docState; final FieldInvertState fieldState; CharTermAttribute termAtt; // Copied from our perThread final CharBlockPool charPool; final IntBlockPool intPool; final ByteBlockPool bytePool; final int streamCount; final int numPostingInt; final FieldInfo fieldInfo; boolean postingsCompacted; int numPostings; private int postingsHashSize = 4; private int postingsHashHalfSize = postingsHashSize/2; private int postingsHashMask = postingsHashSize-1; private int[] postingsHash; ParallelPostingsArray postingsArray; public TermsHashPerField(DocInverterPerField docInverterPerField, final TermsHashPerThread perThread, final TermsHashPerThread nextPerThread, final FieldInfo fieldInfo) { this.perThread = perThread; intPool = perThread.intPool; charPool = perThread.charPool; bytePool = perThread.bytePool; docState = perThread.docState; postingsHash = new int[postingsHashSize]; Arrays.fill(postingsHash, -1); bytesUsed(postingsHashSize * RamUsageEstimator.NUM_BYTES_INT); fieldState = docInverterPerField.fieldState; this.consumer = perThread.consumer.addField(this, fieldInfo); initPostingsArray(); streamCount = consumer.getStreamCount(); numPostingInt = 2*streamCount; this.fieldInfo = fieldInfo; if (nextPerThread != null) nextPerField = (TermsHashPerField) nextPerThread.addField(docInverterPerField, fieldInfo); else nextPerField = null; } private void initPostingsArray() { postingsArray = consumer.createPostingsArray(2); bytesUsed(postingsArray.size * postingsArray.bytesPerPosting()); } // sugar: just forwards to DW private void bytesUsed(long size) { if (perThread.termsHash.trackAllocations) { perThread.termsHash.docWriter.bytesUsed(size); } } void shrinkHash(int targetSize) { assert postingsCompacted || numPostings == 0; final int newSize = 4; if (newSize != postingsHash.length) { final long previousSize = postingsHash.length; postingsHash = new int[newSize]; bytesUsed((newSize-previousSize)*RamUsageEstimator.NUM_BYTES_INT); Arrays.fill(postingsHash, -1); postingsHashSize = newSize; postingsHashHalfSize = newSize/2; postingsHashMask = newSize-1; } // Fully free the postings array on each flush: if (postingsArray != null) { bytesUsed(-postingsArray.bytesPerPosting() * postingsArray.size); postingsArray = null; } } public void reset() { if (!postingsCompacted) compactPostings(); assert numPostings <= postingsHash.length; if (numPostings > 0) { Arrays.fill(postingsHash, 0, numPostings, -1); numPostings = 0; } postingsCompacted = false; if (nextPerField != null) nextPerField.reset(); } @Override synchronized public void abort() { reset(); if (nextPerField != null) nextPerField.abort(); } private final void growParallelPostingsArray() { int oldSize = postingsArray.size; this.postingsArray = this.postingsArray.grow(); bytesUsed(postingsArray.bytesPerPosting() * (postingsArray.size - oldSize)); } public void initReader(ByteSliceReader reader, int termID, int stream) { assert stream < streamCount; int intStart = postingsArray.intStarts[termID]; final int[] ints = intPool.buffers[intStart >> DocumentsWriter.INT_BLOCK_SHIFT]; final int upto = intStart & DocumentsWriter.INT_BLOCK_MASK; reader.init(bytePool, postingsArray.byteStarts[termID]+stream*ByteBlockPool.FIRST_LEVEL_SIZE, ints[upto+stream]); } private void compactPostings() { int upto = 0; for(int i=0;i<postingsHashSize;i++) { if (postingsHash[i] != -1) { if (upto < i) { postingsHash[upto] = postingsHash[i]; postingsHash[i] = -1; } upto++; } } assert upto == numPostings: "upto=" + upto + " numPostings=" + numPostings; postingsCompacted = true; } /** Collapse the hash table & sort in-place. */ public int[] sortPostings() { compactPostings(); final int[] postingsHash = this.postingsHash; new SorterTemplate() { @Override protected void swap(int i, int j) { final int o = postingsHash[i]; postingsHash[i] = postingsHash[j]; postingsHash[j] = o; } @Override protected int compare(int i, int j) { final int term1 = postingsHash[i], term2 = postingsHash[j]; if (term1 == term2) return 0; final int textStart1 = postingsArray.textStarts[term1], textStart2 = postingsArray.textStarts[term2]; final char[] text1 = charPool.buffers[textStart1 >> DocumentsWriter.CHAR_BLOCK_SHIFT]; final int pos1 = textStart1 & DocumentsWriter.CHAR_BLOCK_MASK; final char[] text2 = charPool.buffers[textStart2 >> DocumentsWriter.CHAR_BLOCK_SHIFT]; final int pos2 = textStart2 & DocumentsWriter.CHAR_BLOCK_MASK; return comparePostings(text1, pos1, text2, pos2); } @Override protected void setPivot(int i) { pivotTerm = postingsHash[i]; final int textStart = postingsArray.textStarts[pivotTerm]; pivotBuf = charPool.buffers[textStart >> DocumentsWriter.CHAR_BLOCK_SHIFT]; pivotBufPos = textStart & DocumentsWriter.CHAR_BLOCK_MASK; } @Override protected int comparePivot(int j) { final int term = postingsHash[j]; if (pivotTerm == term) return 0; final int textStart = postingsArray.textStarts[term]; final char[] text = charPool.buffers[textStart >> DocumentsWriter.CHAR_BLOCK_SHIFT]; final int pos = textStart & DocumentsWriter.CHAR_BLOCK_MASK; return comparePostings(pivotBuf, pivotBufPos, text, pos); } private int pivotTerm, pivotBufPos; private char[] pivotBuf; /** Compares term text for two Posting instance and * returns -1 if p1 < p2; 1 if p1 > p2; else 0. */ private int comparePostings(final char[] text1, int pos1, final char[] text2, int pos2) { assert text1 != text2 || pos1 != pos2; while(true) { final char c1 = text1[pos1++]; final char c2 = text2[pos2++]; if (c1 != c2) { if (0xffff == c2) return 1; else if (0xffff == c1) return -1; else return c1-c2; } else // This method should never compare equal postings // unless p1==p2 assert c1 != 0xffff; } } }.quickSort(0, numPostings-1); return postingsHash; } /** Test whether the text for current RawPostingList p equals * current tokenText. */ private boolean postingEquals(final int termID, final char[] tokenText, final int tokenTextLen) { final int textStart = postingsArray.textStarts[termID]; final char[] text = perThread.charPool.buffers[textStart >> DocumentsWriter.CHAR_BLOCK_SHIFT]; assert text != null; int pos = textStart & DocumentsWriter.CHAR_BLOCK_MASK; int tokenPos = 0; for(;tokenPos<tokenTextLen;pos++,tokenPos++) if (tokenText[tokenPos] != text[pos]) return false; return 0xffff == text[pos]; } private boolean doCall; private boolean doNextCall; @Override void start(Fieldable f) { termAtt = fieldState.attributeSource.addAttribute(CharTermAttribute.class); consumer.start(f); if (nextPerField != null) { nextPerField.start(f); } } @Override boolean start(Fieldable[] fields, int count) throws IOException { doCall = consumer.start(fields, count); if (postingsArray == null) { initPostingsArray(); } if (nextPerField != null) doNextCall = nextPerField.start(fields, count); return doCall || doNextCall; } // Secondary entry point (for 2nd & subsequent TermsHash), // because token text has already been "interned" into // textStart, so we hash by textStart public void add(int textStart) throws IOException { int code = textStart; int hashPos = code & postingsHashMask; assert !postingsCompacted; // Locate RawPostingList in hash int termID = postingsHash[hashPos]; if (termID != -1 && postingsArray.textStarts[termID] != textStart) { // Conflict: keep searching different locations in // the hash table. final int inc = ((code>>8)+code)|1; do { code += inc; hashPos = code & postingsHashMask; termID = postingsHash[hashPos]; } while (termID != -1 && postingsArray.textStarts[termID] != textStart); } if (termID == -1) { // First time we are seeing this token since we last // flushed the hash. // New posting termID = numPostings++; if (termID >= postingsArray.size) { growParallelPostingsArray(); } assert termID >= 0; postingsArray.textStarts[termID] = textStart; assert postingsHash[hashPos] == -1; postingsHash[hashPos] = termID; if (numPostings == postingsHashHalfSize) rehashPostings(2*postingsHashSize); // Init stream slices if (numPostingInt + intPool.intUpto > DocumentsWriter.INT_BLOCK_SIZE) intPool.nextBuffer(); if (DocumentsWriter.BYTE_BLOCK_SIZE - bytePool.byteUpto < numPostingInt*ByteBlockPool.FIRST_LEVEL_SIZE) bytePool.nextBuffer(); intUptos = intPool.buffer; intUptoStart = intPool.intUpto; intPool.intUpto += streamCount; postingsArray.intStarts[termID] = intUptoStart + intPool.intOffset; for(int i=0;i<streamCount;i++) { final int upto = bytePool.newSlice(ByteBlockPool.FIRST_LEVEL_SIZE); intUptos[intUptoStart+i] = upto + bytePool.byteOffset; } postingsArray.byteStarts[termID] = intUptos[intUptoStart]; consumer.newTerm(termID); } else { int intStart = postingsArray.intStarts[termID]; intUptos = intPool.buffers[intStart >> DocumentsWriter.INT_BLOCK_SHIFT]; intUptoStart = intStart & DocumentsWriter.INT_BLOCK_MASK; consumer.addTerm(termID); } } // Primary entry point (for first TermsHash) @Override void add() throws IOException { assert !postingsCompacted; // We are first in the chain so we must "intern" the // term text into textStart address // Get the text of this term. final char[] tokenText = termAtt.buffer(); final int tokenTextLen = termAtt.length(); // Compute hashcode & replace any invalid UTF16 sequences int downto = tokenTextLen; int code = 0; while (downto > 0) { char ch = tokenText[--downto]; if (ch >= UnicodeUtil.UNI_SUR_LOW_START && ch <= UnicodeUtil.UNI_SUR_LOW_END) { if (0 == downto) { // Unpaired ch = tokenText[downto] = UnicodeUtil.UNI_REPLACEMENT_CHAR; } else { final char ch2 = tokenText[downto-1]; if (ch2 >= UnicodeUtil.UNI_SUR_HIGH_START && ch2 <= UnicodeUtil.UNI_SUR_HIGH_END) { // OK: high followed by low. This is a valid // surrogate pair. code = ((code*31) + ch)*31+ch2; downto--; continue; } else { // Unpaired ch = tokenText[downto] = UnicodeUtil.UNI_REPLACEMENT_CHAR; } } } else if (ch >= UnicodeUtil.UNI_SUR_HIGH_START && (ch <= UnicodeUtil.UNI_SUR_HIGH_END || ch == 0xffff)) { // Unpaired or 0xffff ch = tokenText[downto] = UnicodeUtil.UNI_REPLACEMENT_CHAR; } code = (code*31) + ch; } int hashPos = code & postingsHashMask; // Locate RawPostingList in hash int termID = postingsHash[hashPos]; if (termID != -1 && !postingEquals(termID, tokenText, tokenTextLen)) { // Conflict: keep searching different locations in // the hash table. final int inc = ((code>>8)+code)|1; do { code += inc; hashPos = code & postingsHashMask; termID = postingsHash[hashPos]; } while (termID != -1 && !postingEquals(termID, tokenText, tokenTextLen)); } if (termID == -1) { // First time we are seeing this token since we last // flushed the hash. final int textLen1 = 1+tokenTextLen; if (textLen1 + charPool.charUpto > DocumentsWriter.CHAR_BLOCK_SIZE) { if (textLen1 > DocumentsWriter.CHAR_BLOCK_SIZE) { // Just skip this term, to remain as robust as // possible during indexing. A TokenFilter // can be inserted into the analyzer chain if // other behavior is wanted (pruning the term // to a prefix, throwing an exception, etc). if (docState.maxTermPrefix == null) docState.maxTermPrefix = new String(tokenText, 0, 30); consumer.skippingLongTerm(); return; } charPool.nextBuffer(); } // New posting termID = numPostings++; if (termID >= postingsArray.size) { growParallelPostingsArray(); } assert termID != -1; final char[] text = charPool.buffer; final int textUpto = charPool.charUpto; postingsArray.textStarts[termID] = textUpto + charPool.charOffset; charPool.charUpto += textLen1; System.arraycopy(tokenText, 0, text, textUpto, tokenTextLen); text[textUpto+tokenTextLen] = 0xffff; assert postingsHash[hashPos] == -1; postingsHash[hashPos] = termID; if (numPostings == postingsHashHalfSize) { rehashPostings(2*postingsHashSize); bytesUsed(2*numPostings * RamUsageEstimator.NUM_BYTES_INT); } // Init stream slices if (numPostingInt + intPool.intUpto > DocumentsWriter.INT_BLOCK_SIZE) intPool.nextBuffer(); if (DocumentsWriter.BYTE_BLOCK_SIZE - bytePool.byteUpto < numPostingInt*ByteBlockPool.FIRST_LEVEL_SIZE) bytePool.nextBuffer(); intUptos = intPool.buffer; intUptoStart = intPool.intUpto; intPool.intUpto += streamCount; postingsArray.intStarts[termID] = intUptoStart + intPool.intOffset; for(int i=0;i<streamCount;i++) { final int upto = bytePool.newSlice(ByteBlockPool.FIRST_LEVEL_SIZE); intUptos[intUptoStart+i] = upto + bytePool.byteOffset; } postingsArray.byteStarts[termID] = intUptos[intUptoStart]; consumer.newTerm(termID); } else { final int intStart = postingsArray.intStarts[termID]; intUptos = intPool.buffers[intStart >> DocumentsWriter.INT_BLOCK_SHIFT]; intUptoStart = intStart & DocumentsWriter.INT_BLOCK_MASK; consumer.addTerm(termID); } if (doNextCall) nextPerField.add(postingsArray.textStarts[termID]); } int[] intUptos; int intUptoStart; void writeByte(int stream, byte b) { int upto = intUptos[intUptoStart+stream]; byte[] bytes = bytePool.buffers[upto >> DocumentsWriter.BYTE_BLOCK_SHIFT]; assert bytes != null; int offset = upto & DocumentsWriter.BYTE_BLOCK_MASK; if (bytes[offset] != 0) { // End of slice; allocate a new one offset = bytePool.allocSlice(bytes, offset); bytes = bytePool.buffer; intUptos[intUptoStart+stream] = offset + bytePool.byteOffset; } bytes[offset] = b; (intUptos[intUptoStart+stream])++; } public void writeBytes(int stream, byte[] b, int offset, int len) { // TODO: optimize final int end = offset + len; for(int i=offset;i<end;i++) writeByte(stream, b[i]); } void writeVInt(int stream, int i) { assert stream < streamCount; while ((i & ~0x7F) != 0) { writeByte(stream, (byte)((i & 0x7f) | 0x80)); i >>>= 7; } writeByte(stream, (byte) i); } @Override void finish() throws IOException { try { consumer.finish(); } finally { if (nextPerField != null) { nextPerField.finish(); } } } /** Called when postings hash is too small (> 50% * occupied) or too large (< 20% occupied). */ void rehashPostings(final int newSize) { final int newMask = newSize-1; int[] newHash = new int[newSize]; Arrays.fill(newHash, -1); for(int i=0;i<postingsHashSize;i++) { int termID = postingsHash[i]; if (termID != -1) { int code; if (perThread.primary) { final int textStart = postingsArray.textStarts[termID]; final int start = textStart & DocumentsWriter.CHAR_BLOCK_MASK; final char[] text = charPool.buffers[textStart >> DocumentsWriter.CHAR_BLOCK_SHIFT]; int pos = start; while(text[pos] != 0xffff) pos++; code = 0; while (pos > start) code = (code*31) + text[--pos]; } else code = postingsArray.textStarts[termID]; int hashPos = code & newMask; assert hashPos >= 0; if (newHash[hashPos] != -1) { final int inc = ((code>>8)+code)|1; do { code += inc; hashPos = code & newMask; } while (newHash[hashPos] != -1); } newHash[hashPos] = termID; } } postingsHashMask = newMask; postingsHash = newHash; postingsHashSize = newSize; postingsHashHalfSize = newSize >> 1; } }