package org.rr.commons.collection; import java.io.IOException; import java.io.Serializable; import java.util.AbstractCollection; import java.util.AbstractMap; import java.util.AbstractSet; import java.util.Collection; import java.util.ConcurrentModificationException; import java.util.Iterator; import java.util.Map; import java.util.NoSuchElementException; import java.util.Set; /** * A {@link AbstractMap} implementation which automatically remove values which * are too * * @param <K> * @param <V> */ public class VolatileHashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable { /** * The default initial capacity - MUST be a power of two. */ static final int DEFAULT_INITIAL_CAPACITY = 16; /** * The maximum capacity, used if a higher value is implicitly specified by either of the constructors with arguments. MUST be a power of two <= 1<<30. */ static final int MAXIMUM_CAPACITY = 1 << 30; /** * The load factor used when none specified in constructor. */ static final float DEFAULT_LOAD_FACTOR = 0.75f; /** * The table, resized as necessary. Length MUST Always be a power of two. */ transient Entry<K,V> [] table; /** * The number of key-value mappings contained in this identity hash map. */ transient int size; /** * The next size value at which to resize (capacity * load factor). * * @serial */ int threshold; /** * * @serial */ final float loadFactor; /** * The number of times this HashMap has been structurally modified Structural modifications are those that change the number of mappings in the HashMap or * otherwise modify its internal structure (e.g., rehash). This field is used to make iterators on Collection-views of the HashMap fail-fast. (See * ConcurrentModificationException). */ transient volatile int modCount; /** * Each of these fields are initialized to contain an instance of the appropriate view the first time this view is requested. The views are stateless, so * there's no reason to create more than one of each. */ transient volatile Set<K> keySet = null; transient volatile Collection<V> values = null; /** * Specifies the max guaranteed capacity. If the maximum is reached, these values which are the oldes ones will be removed from the {@link VolatileHashMap}. */ int maxCapacity = -1; /** * Percentage value allowed to exceed the maxCapacity before the oldest data gets removed. */ private int volatileExceedValue = 10; /** * The latest entry for a successfull {@link #containsKey(Object)} is stored here. * the next {@link #get(Object)} call will check this value first before searching * for it. */ private Entry<K, V> lastContains = null; /** * Constructs an empty <tt>HashMap</tt> with the specified initial capacity and load factor. * * @param initialCapacity * The initial capacity. * @param loadFactor * The load factor. * @throws IllegalArgumentException * if the initial capacity is negative or the load factor is nonpositive. */ @SuppressWarnings("unchecked") private VolatileHashMap(int maxCapacity, int initialCapacity, float loadFactor) { if(maxCapacity < -1) { throw new IllegalArgumentException("max capcacity of " + String.valueOf(maxCapacity) + " not supported."); } if (initialCapacity < 0) { throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity); } if (initialCapacity > MAXIMUM_CAPACITY) { initialCapacity = MAXIMUM_CAPACITY; } if (loadFactor <= 0 || Float.isNaN(loadFactor)) { throw new IllegalArgumentException("Illegal load factor: " + loadFactor); } // Find a power of 2 >= initialCapacity int capacity = 1; while (capacity < initialCapacity) { capacity <<= 1; } this.loadFactor = loadFactor; this.maxCapacity = maxCapacity; threshold = (int) (capacity * loadFactor); table = new Entry[capacity]; init(); } /** * Constructs an empty <tt>HashMap</tt> with the specified max capacity and the default load factor (0.75). * The default init capacity is 16. * * @param maxCapacity * the max capacity. * @throws IllegalArgumentException * if the initial capacity is negative. */ public VolatileHashMap(int maxCapacity) { this(maxCapacity, DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR); } /** * Constructs an empty <tt>HashMap</tt> with the specified initial capacity and the default load factor (0.75) * and a specified maximal capacity which allows a HashMap with transient values. * * @param initialCapacity the initial capacity. * @param maxCapacity the maximal capacity * @throws IllegalArgumentException * if the initial capacity is negative. * * @see #setMaxCapacity(int) */ public VolatileHashMap(int initialCapacity, int maxCapacity) { this(maxCapacity, initialCapacity, DEFAULT_LOAD_FACTOR); } // internal utilities /** * Initialization hook for subclasses. This method is called in all constructors and pseudo-constructors (clone, readObject) after HashMap has been * initialized but before any entries have been inserted. (In the absence of this method, readObject would require explicit knowledge of subclasses.) */ void init() { } /** * Value representing null keys inside tables. */ static final Object NULL_KEY = new Object(); /** * Returns a hash value for the specified object. In addition to the object's own hashCode, this method applies a "supplemental hash function," which * defends against poor quality hash functions. This is critical because HashMap uses power-of two length hash tables. * <p> * * The shift distances in this function were chosen as the result of an automated search over the entire four-dimensional search space. */ static int hash(Object x) { int h = x.hashCode(); h += ~(h << 9); h ^= (h >>> 14); h += (h << 4); h ^= (h >>> 10); return h; } /** * Check for equality of non-null reference x and possibly-null y. */ static boolean eq(Object x, Object y) { return x == y || x.equals(y); } /** * Returns index for hash code h. */ static int indexFor(int h, int length) { return h & (length - 1); } /** * Returns the number of key-value mappings in this map. * * @return the number of key-value mappings in this map. */ public int size() { return size; } /** * Returns <tt>true</tt> if this map contains no key-value mappings. * * @return <tt>true</tt> if this map contains no key-value mappings. */ public boolean isEmpty() { return size == 0; } /** * Returns the value to which the specified key is mapped in this identity hash map, or <tt>null</tt> if the map contains no mapping for this key. A * return value of <tt>null</tt> does not <i>necessarily</i> indicate that the map contains no mapping for the key; it is also possible that the map * explicitly maps the key to <tt>null</tt>. The <tt>containsKey</tt> method may be used to distinguish these two cases. * * @param key * the key whose associated value is to be returned. * @return the value to which this map maps the specified key, or <tt>null</tt> if the map contains no mapping for this key. * @see #put(Object, Object) */ public V get(Object key) { if (key == null) { return getForNullKey(); } if(lastContains!=null && lastContains.key.equals(key)) { lastContains.time = System.currentTimeMillis(); // update the time for the touched entry. V value = lastContains.value; lastContains = null; return value; } int hash = hash(key.hashCode()); for (Entry<K,V> e = table[indexFor(hash, table.length)]; e != null; e = e.next) { Object k; if (e.hash == hash && ((k = e.key) == key || key.equals(k))) { if(e!=null) { e.time = System.currentTimeMillis(); // update the time for the touched entry. } return e.value; } } return null; } /** * Offloaded version of get() to look up null keys. Null keys map * to index 0. This null case is split out into separate methods * for the sake of performance in the two most commonly used * operations (get and put), but incorporated with conditionals in * others. */ private V getForNullKey() { for (Entry<K,V> e = table[0]; e != null; e = e.next) { if (e.key == null) return e.value; } return null; } /** * Returns <tt>true</tt> if this map contains a mapping for the specified key. * * @param key * The key whose presence in this map is to be tested * @return <tt>true</tt> if this map contains a mapping for the specified key. */ public boolean containsKey(Object key) { return (lastContains = getEntry(key)) != null; } /** * Returns the entry associated with the specified key in the HashMap. Returns null if the HashMap contains no mapping for this key. */ final Entry<K, V> getEntry(Object key) { int hash = (key == null) ? 0 : hash(key.hashCode()); for (Entry<K, V> e = table[indexFor(hash, table.length)]; e != null; e = e.next) { Object k; if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { e.time = System.currentTimeMillis(); // update the time for the touched entry. return e; } } return null; } /** * Associates the specified value with the specified key in this map. If the map previously contained a mapping for this key, the old value is replaced. * * @param key * key with which the specified value is to be associated. * @param value * value to be associated with the specified key. * @return previous value associated with specified key, or <tt>null</tt> if there was no mapping for key. A <tt>null</tt> return can also indicate that * the HashMap previously associated <tt>null</tt> with the specified key. */ public V put(K key, V value) { //if the max capacity is 0, do not put anything into the map if(maxCapacity==0) { return null; } if (key == null) { return putForNullKey(value); } int hash = hash(key.hashCode()); int i = indexFor(hash, table.length); for (Entry<K,V> e = table[i]; e != null; e = e.next) { Object k; if (e.hash == hash && ((k = e.key) == key || key.equals(k))) { V oldValue = e.value; e.value = value; e.recordAccess(this); return oldValue; } } modCount++; addEntry(hash, key, value, i); removeOldEntries(); return null; } /** * Offloaded version of put for null keys */ private V putForNullKey(V value) { for (Entry<K,V> e = table[0]; e != null; e = e.next) { if (e.key == null) { V oldValue = e.value; e.value = value; e.recordAccess(this); return oldValue; } } modCount++; addEntry(0, null, value, 0); return null; } /** * This method is used instead of put by constructors and pseudoconstructors (clone, readObject). It does not resize the table, check for comodification, * etc. It calls createEntry rather than addEntry. */ private void putForCreate(K key, V value) { int hash = (key == null) ? 0 : hash(key.hashCode()); int i = indexFor(hash, table.length);; /** * Look for preexisting entry for key. This will never happen for * clone or deserialize. It will only happen for construction if the * input Map is a sorted map whose ordering is inconsistent w/ equals. */ for (Entry<K,V> e = table[i]; e != null; e = e.next) { Object k; if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { e.value = value; return; } } createEntry(hash, key, value, i); } void putAllForCreate(Map<? extends K, ? extends V> m) { for (Iterator<? extends Map.Entry<? extends K, ? extends V>> i = m.entrySet().iterator(); i.hasNext(); ) { Map.Entry<? extends K, ? extends V> e = i.next(); putForCreate(e.getKey(), e.getValue()); } } /** * Rehashes the contents of this map into a new array with a larger capacity. This method is called automatically when the number of keys in this map * reaches its threshold. * * If current capacity is MAXIMUM_CAPACITY, this method does not resize the map, but but sets threshold to Integer.MAX_VALUE. This has the effect of * preventing future calls. * * @param newCapacity * the new capacity, MUST be a power of two; must be greater than current capacity unless current capacity is MAXIMUM_CAPACITY (in which case * value is irrelevant). */ @SuppressWarnings("unchecked") void resize(int newCapacity) { Entry<K,V>[] oldTable = table; int oldCapacity = oldTable.length; if (oldCapacity == MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return; } Entry<K,V>[] newTable = new Entry[newCapacity]; transfer(newTable); table = newTable; threshold = (int) (newCapacity * loadFactor); } /** * Transfer all entries from current table to newTable. */ void transfer(Entry<K,V>[] newTable) { Entry<K,V>[] src = table; int newCapacity = newTable.length; for (int j = 0; j < src.length; j++) { Entry<K,V> e = src[j]; if (e != null) { src[j] = null; do { Entry<K,V> next = e.next; int i = indexFor(e.hash, newCapacity); e.next = newTable[i]; newTable[i] = e; e = next; } while (e != null); } } } /** * Copies all of the mappings from the specified map to this map These mappings will replace any mappings that this map had for any of the keys currently in * the specified map. * * @param m * mappings to be stored in this map. * @throws NullPointerException * if the specified map is null. */ public void putAll(Map<? extends K, ? extends V> m) { //if the max capacity is 0, do not put anything into the map if(maxCapacity<=0) { return; } int numKeysToBeAdded = m.size(); if (numKeysToBeAdded == 0) return; /* * Expand the map if the map if the number of mappings to be added is greater than or equal to threshold. This is conservative; the obvious condition is * (m.size() + size) >= threshold, but this condition could result in a map with twice the appropriate capacity, if the keys to be added overlap with * the keys already in this map. By using the conservative calculation, we subject ourself to at most one extra resize. */ if (numKeysToBeAdded > threshold) { int targetCapacity = (int) (numKeysToBeAdded / loadFactor + 1); if (targetCapacity > MAXIMUM_CAPACITY) targetCapacity = MAXIMUM_CAPACITY; int newCapacity = table.length; while (newCapacity < targetCapacity) newCapacity <<= 1; if (newCapacity > table.length) resize(newCapacity); } for (Iterator<? extends Map.Entry<? extends K, ? extends V>> i = m.entrySet().iterator(); i.hasNext(); ) { Map.Entry<? extends K, ? extends V> e = i.next(); put(e.getKey(), e.getValue()); } removeOldEntries(); } /** * Removes the mapping for this key from this map if present. * * @param key * key whose mapping is to be removed from the map. * @return previous value associated with specified key, or <tt>null</tt> if there was no mapping for key. A <tt>null</tt> return can also indicate that * the map previously associated <tt>null</tt> with the specified key. */ public V remove(Object key) { Entry<K,V> e = removeEntryForKey(key); return (e == null ? null : e.value); } /** * Removes and returns the entry associated with the specified key in the HashMap. Returns null if the HashMap contains no mapping for this key. */ final Entry<K,V> removeEntryForKey(Object key) { int hash = (key == null) ? 0 : hash(key.hashCode()); int i = indexFor(hash, table.length); Entry<K,V> prev = table[i]; Entry<K,V> e = prev; while (e != null) { Entry<K,V> next = e.next; Object k; if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { modCount++; size--; if (prev == e) table[i] = next; else prev.next = next; e.recordRemoval(this); return e; } prev = e; e = next; } return e; } /** * Special version of remove for EntrySet. */ @SuppressWarnings("unchecked") Entry<K,V> removeMapping(Object o) { if (!(o instanceof Map.Entry)) { return null; } Map.Entry<K,V> entry = (Map.Entry<K,V>) o; Object key = entry.getKey(); int hash = (key == null) ? 0 : hash(key.hashCode()); int i = indexFor(hash, table.length); Entry<K,V> prev = table[i]; Entry<K,V> e = prev; while (e != null) { Entry<K,V> next = e.next; if (e.hash == hash && e.equals(entry)) { modCount++; size--; if (prev == e) table[i] = next; else prev.next = next; e.recordRemoval(this); return e; } prev = e; e = next; } return e; } /** * Removes all mappings from this map. */ public void clear() { modCount++; Entry<K,V> tab[] = table; for (int i = 0; i < tab.length; i++) tab[i] = null; size = 0; } /** * Returns <tt>true</tt> if this map maps one or more keys to the specified value. * * @param value * value whose presence in this map is to be tested. * @return <tt>true</tt> if this map maps one or more keys to the specified value. */ public boolean containsValue(Object value) { if (value == null) return containsNullValue(); Entry<K,V> tab[] = table; for (int i = 0; i < tab.length; i++) for (Entry<K,V> e = tab[i]; e != null; e = e.next) if (value.equals(e.value)) return true; return false; } /** * Special-case code for containsValue with null argument */ protected boolean containsNullValue() { Entry<K,V> tab[] = table; for (int i = 0; i < tab.length; i++) for (Entry<K,V> e = tab[i]; e != null; e = e.next) if (e.value == null) return true; return false; } /** * Returns a shallow copy of this <tt>HashMap</tt> instance: the keys and values themselves are not cloned. * * @return a shallow copy of this map. */ @SuppressWarnings("unchecked") public Object clone() { VolatileHashMap<K,V> result = null; try { result = (VolatileHashMap<K,V>) super.clone(); } catch (CloneNotSupportedException e) { // assert false; } result.table = new Entry[table.length]; result.entrySet = null; result.modCount = 0; result.size = 0; result.init(); result.putAllForCreate(this); return result; } static class Entry<K,V> implements Map.Entry<K,V> { final K key; V value; final int hash; Entry<K,V> next; long time; /** * Create new entry. */ Entry(int h, K k, V v, Entry<K,V> n) { value = v; next = n; key = k; hash = h; time = System.currentTimeMillis(); } public K getKey() { return key; } public V getValue() { return value; } public V setValue(V newValue) { V oldValue = value; value = newValue; return oldValue; } public boolean equals(Object o) { if (!(o instanceof Map.Entry)) { return false; } @SuppressWarnings("rawtypes") Map.Entry e = (Map.Entry) o; Object k1 = getKey(); Object k2 = e.getKey(); if (k1 == k2 || (k1 != null && k1.equals(k2))) { Object v1 = getValue(); Object v2 = e.getValue(); if (v1 == v2 || (v1 != null && v1.equals(v2))) { return true; } } return false; } public int hashCode() { return (key == NULL_KEY ? 0 : key.hashCode()) ^ (value == null ? 0 : value.hashCode()); } public String toString() { return getKey() + "=" + getValue(); } /** * This method is invoked whenever the value in an entry is overwritten by an invocation of put(k,v) for a key k that's already in the HashMap. */ void recordAccess(VolatileHashMap<K,V> m) { } /** * This method is invoked whenever the entry is removed from the table. */ void recordRemoval(VolatileHashMap<K,V> m) { } } /** * Adds a new entry with the specified key, value and hash code to * the specified bucket. It is the responsibility of this * method to resize the table if appropriate. * * Subclass overrides this to alter the behavior of put method. */ void addEntry(int hash, K key, V value, int bucketIndex) { Entry<K, V> e = table[bucketIndex]; table[bucketIndex] = new Entry<K, V>(hash, key, value, e); if (size++ >= threshold) { resize(2 * table.length); } } /** * Like addEntry except that this version is used when creating entries as part of Map construction or "pseudo-construction" (cloning, deserialization). * This version needn't worry about resizing the table. * * Subclass overrides this to alter the behavior of HashMap(Map), clone, and readObject. */ void createEntry(int hash, K key, V value, int bucketIndex) { Entry<K, V> e = table[bucketIndex]; table[bucketIndex] = new Entry<K, V>(hash, key, value, e); size++; } private abstract class HashIterator<E> implements Iterator<E> { Entry<K,V> next; // next entry to return int expectedModCount; // For fast-fail int index; // current slot Entry<K,V> current; // current entry HashIterator() { expectedModCount = modCount; Entry<K,V>[] t = table; int i = t.length; Entry<K,V> n = null; if (size != 0) { // advance to first entry while (i > 0 && (n = t[--i]) == null) ; } next = n; index = i; } public boolean hasNext() { return next != null; } Entry<K,V> nextEntry() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); Entry<K,V> e = next; if (e == null) throw new NoSuchElementException(); Entry<K,V> n = e.next; Entry<K,V>[] t = table; int i = index; while (n == null && i > 0) n = t[--i]; index = i; next = n; return current = e; } public void remove() { if (current == null) throw new IllegalStateException(); if (modCount != expectedModCount) throw new ConcurrentModificationException(); Object k = current.key; current = null; VolatileHashMap.this.removeEntryForKey(k); expectedModCount = modCount; } } private final class ValueIterator extends HashIterator<V> { public V next() { return nextEntry().value; } } private final class KeyIterator extends HashIterator<K> { public K next() { return nextEntry().getKey(); } } private final class EntryIterator extends HashIterator<Map.Entry<K,V>> { public Map.Entry<K,V> next() { return nextEntry(); } } // Subclass overrides these to alter behavior of views' iterator() method Iterator<K> newKeyIterator() { return new KeyIterator(); } Iterator<V> newValueIterator() { return new ValueIterator(); } Iterator<Map.Entry<K,V>> newEntryIterator() { return new EntryIterator(); } // Views private transient Set<Map.Entry<K,V>> entrySet = null; /** * Returns a set view of the keys contained in this map. The set is backed by the map, so changes to the map are reflected in the set, and vice-versa. The * set supports element removal, which removes the corresponding mapping from this map, via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>, * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations. It does not support the <tt>add</tt> or <tt>addAll</tt> operations. * * @return a set view of the keys contained in this map. */ public Set<K> keySet() { Set<K> ks = keySet; return (ks != null ? ks : (keySet = new KeySet())); } protected final class KeySet extends AbstractSet<K> { public Iterator<K> iterator() { return newKeyIterator(); } public int size() { return size; } public boolean contains(Object o) { return containsKey(o); } public boolean remove(Object o) { return VolatileHashMap.this.removeEntryForKey(o) != null; } public void clear() { VolatileHashMap.this.clear(); } } /** * Returns a collection view of the values contained in this map. The collection is backed by the map, so changes to the map are reflected in the * collection, and vice-versa. The collection supports element removal, which removes the corresponding mapping from this map, via the * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations. It does not * support the <tt>add</tt> or <tt>addAll</tt> operations. * * @return a collection view of the values contained in this map. */ public Collection<V> values() { Collection<V> vs = values; return (vs != null ? vs : (values = new Values())); } private final class Values extends AbstractCollection<V> { public Iterator<V> iterator() { return newValueIterator(); } public int size() { return size; } public boolean contains(Object o) { return containsValue(o); } public void clear() { VolatileHashMap.this.clear(); } } /** * Returns a {@link Set} view of the mappings contained in this map. The set is backed by the map, so changes to the map are reflected in the set, and * vice-versa. If the map is modified while an iteration over the set is in progress (except through the iterator's own <tt>remove</tt> operation, or * through the <tt>setValue</tt> operation on a map entry returned by the iterator) the results of the iteration are undefined. The set supports element * removal, which removes the corresponding mapping from the map, via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>, <tt>removeAll</tt>, * <tt>retainAll</tt> and <tt>clear</tt> operations. It does not support the <tt>add</tt> or <tt>addAll</tt> operations. * * @return a set view of the mappings contained in this map */ public Set<Map.Entry<K, V>> entrySet() { return entrySet0(); } private Set<Map.Entry<K, V>> entrySet0() { Set<Map.Entry<K, V>> es = entrySet; return es != null ? es : (entrySet = new EntrySet()); } private final class EntrySet extends AbstractSet<Map.Entry<K,V>> { public Iterator<Map.Entry<K,V>> iterator() { return newEntryIterator(); } @SuppressWarnings("unchecked") public boolean contains(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry<K,V> e = (Map.Entry<K,V>) o; Entry<K,V> candidate = getEntry(e.getKey()); return candidate != null && candidate.equals(e); } public boolean remove(Object o) { return removeMapping(o) != null; } public int size() { return size; } public void clear() { VolatileHashMap.this.clear(); } } /** * Save the state of the <tt>HashMap</tt> instance to a stream (i.e., serialize it). * * @serialData The <i>capacity</i> of the HashMap (the length of the bucket array) is emitted (int), followed by the <i>size</i> of the HashMap (the * number of key-value mappings), followed by the key (Object) and value (Object) for each key-value mapping represented by the HashMap The * key-value mappings are emitted in the order that they are returned by <tt>entrySet().iterator()</tt>. * */ private void writeObject(java.io.ObjectOutputStream s) throws IOException { Iterator<Map.Entry<K,V>> i = (size > 0) ? entrySet0().iterator() : null; // Write out the threshold, loadfactor, and any hidden stuff s.defaultWriteObject(); // Write out number of buckets s.writeInt(table.length); // Write out size (number of Mappings) s.writeInt(size); // Write out keys and values (alternating) if (i == null) return; while (i.hasNext()) { Map.Entry<K,V> e = i.next(); s.writeObject(e.getKey()); s.writeObject(e.getValue()); } } private static final long serialVersionUID = 362498820763181265L; /** * Reconstitute the <tt>HashMap</tt> instance from a stream (i.e., deserialize it). */ @SuppressWarnings("unchecked") private void readObject(java.io.ObjectInputStream s) throws IOException, ClassNotFoundException { // Read in the threshold, loadfactor, and any hidden stuff s.defaultReadObject(); // Read in number of buckets and allocate the bucket array; int numBuckets = s.readInt(); table = new Entry[numBuckets]; init(); // Give subclass a chance to do its thing. // Read in size (number of Mappings) int size = s.readInt(); // Read the keys and values, and put the mappings in the HashMap for (int i = 0; i < size; i++) { K key = (K) s.readObject(); V value = (V) s.readObject(); putForCreate(key, value); } } // These methods are used when serializing HashSets int capacity() { return table.length; } float loadFactor() { return loadFactor; } /** * Gets the maximal capacity. If no maximal capacity is specified -1 is returned. * * @return The max capacity * @see #setMaxCapacity(int) */ public int getMaxCapacity() { return maxCapacity; } /** * Sets the maximal capacity for this {@link VolatileHashMap} instance. If the max capacity is reached, the oldes values will be removed from the {@link VolatileHashMap}. * * @param maxCapacity * The maximal number of entries. * @see #getMaxCapacity() */ public void setMaxCapacity(int maxCapacity) { if(maxCapacity < -1) { throw new IllegalArgumentException("max capcacity of " + String.valueOf(maxCapacity) + " not supported."); } this.maxCapacity = maxCapacity; } /** * Removes all entries which are the oldes ones in the HashMap. The oldes ones are these ones which stays the longest time and did not touched in younger * time. */ private void removeOldEntries() { if(maxCapacity == -1) { return; } //only loop if the max capacity exceeds the 10 percent mark if (size > maxCapacity + (maxCapacity / volatileExceedValue)) { while (size > maxCapacity) { long oldest = System.currentTimeMillis(); // all the other should be older! Entry<K,V> oldestEntry = null; Iterator<Map.Entry<K, V>> iter = entrySet().iterator(); while (iter.hasNext()) { Entry<K,V> entry = (Entry<K, V>) iter.next(); long oldOldest = oldest; oldest = Math.min(oldest, entry.time); if (oldOldest != oldest) { oldestEntry = entry; } } if (oldestEntry != null) { entrySet.remove(oldestEntry); } } } } }