/* * Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* * @test * @bug 4181191 4161971 4227146 4194389 4823171 4624738 4812225 * @summary tests methods in BigInteger * @run main/timeout=400 BigIntegerTest * @author madbot */ import java.util.Random; import java.math.BigInteger; import java.io.*; /** * This is a simple test class created to ensure that the results * generated by BigInteger adhere to certain identities. Passing * this test is a strong assurance that the BigInteger operations * are working correctly. * * Three arguments may be specified which give the number of * decimal digits you desire in the three batches of test numbers. * * The tests are performed on arrays of random numbers which are * generated by a Random class as well as special cases which * throw in boundary numbers such as 0, 1, maximum sized, etc. * */ public class BigIntegerTest { static Random rnd = new Random(); static int size = 1000; // numbers per batch static boolean failure = false; // Some variables for sizing test numbers in bits private static int order1 = 100; private static int order2 = 60; private static int order3 = 30; public static void pow() { int failCount1 = 0; for (int i=0; i<size; i++) { int power = rnd.nextInt(6) +2; BigInteger x = fetchNumber(order1); BigInteger y = x.pow(power); BigInteger z = x; for (int j=1; j<power; j++) z = z.multiply(x); if (!y.equals(z)) failCount1++; } report("pow", failCount1); } public static void arithmetic() { int failCount = 0; for (int i=0; i<size; i++) { BigInteger x = fetchNumber(order1); while(x.compareTo(BigInteger.ZERO) != 1) x = fetchNumber(order1); BigInteger y = fetchNumber(order1/2); while(x.compareTo(y) == -1) y = fetchNumber(order1/2); if (y.equals(BigInteger.ZERO)) y = y.add(BigInteger.ONE); BigInteger baz = x.divide(y); baz = baz.multiply(y); baz = baz.add(x.remainder(y)); baz = baz.subtract(x); if (!baz.equals(BigInteger.ZERO)) failCount++; } report("Arithmetic I", failCount); failCount = 0; for (int i=0; i<100; i++) { BigInteger x = fetchNumber(order1); while(x.compareTo(BigInteger.ZERO) != 1) x = fetchNumber(order1); BigInteger y = fetchNumber(order1/2); while(x.compareTo(y) == -1) y = fetchNumber(order1/2); if (y.equals(BigInteger.ZERO)) y = y.add(BigInteger.ONE); BigInteger baz[] = x.divideAndRemainder(y); baz[0] = baz[0].multiply(y); baz[0] = baz[0].add(baz[1]); baz[0] = baz[0].subtract(x); if (!baz[0].equals(BigInteger.ZERO)) failCount++; } report("Arithmetic II", failCount); } public static void bitCount() { int failCount = 0; for (int i=0; i<size*10; i++) { int x = rnd.nextInt(); BigInteger bigX = BigInteger.valueOf((long)x); int bit = (x < 0 ? 0 : 1); int tmp = x, bitCount = 0; for (int j=0; j<32; j++) { bitCount += ((tmp & 1) == bit ? 1 : 0); tmp >>= 1; } if (bigX.bitCount() != bitCount) { //System.err.println(x+": "+bitCount+", "+bigX.bitCount()); failCount++; } } report("Bit Count", failCount); } public static void bitLength() { int failCount = 0; for (int i=0; i<size*10; i++) { int x = rnd.nextInt(); BigInteger bigX = BigInteger.valueOf((long)x); int signBit = (x < 0 ? 0x80000000 : 0); int tmp = x, bitLength, j; for (j=0; j<32 && (tmp & 0x80000000)==signBit; j++) tmp <<= 1; bitLength = 32 - j; if (bigX.bitLength() != bitLength) { //System.err.println(x+": "+bitLength+", "+bigX.bitLength()); failCount++; } } report("BitLength", failCount); } public static void bitOps() { int failCount1 = 0, failCount2 = 0, failCount3 = 0; for (int i=0; i<size*5; i++) { BigInteger x = fetchNumber(order1); BigInteger y; /* Test setBit and clearBit (and testBit) */ if (x.signum() < 0) { y = BigInteger.valueOf(-1); for (int j=0; j<x.bitLength(); j++) if (!x.testBit(j)) y = y.clearBit(j); } else { y = BigInteger.ZERO; for (int j=0; j<x.bitLength(); j++) if (x.testBit(j)) y = y.setBit(j); } if (!x.equals(y)) failCount1++; /* Test flipBit (and testBit) */ y = BigInteger.valueOf(x.signum()<0 ? -1 : 0); for (int j=0; j<x.bitLength(); j++) if (x.signum()<0 ^ x.testBit(j)) y = y.flipBit(j); if (!x.equals(y)) failCount2++; } report("clearBit/testBit", failCount1); report("flipBit/testBit", failCount2); for (int i=0; i<size*5; i++) { BigInteger x = fetchNumber(order1); /* Test getLowestSetBit() */ int k = x.getLowestSetBit(); if (x.signum() == 0) { if (k != -1) failCount3++; } else { BigInteger z = x.and(x.negate()); int j; for (j=0; j<z.bitLength() && !z.testBit(j); j++) ; if (k != j) failCount3++; } } report("getLowestSetBit", failCount3); } public static void bitwise() { /* Test identity x^y == x|y &~ x&y */ int failCount = 0; for (int i=0; i<size; i++) { BigInteger x = fetchNumber(order1); BigInteger y = fetchNumber(order1); BigInteger z = x.xor(y); BigInteger w = x.or(y).andNot(x.and(y)); if (!z.equals(w)) failCount++; } report("Logic (^ | & ~)", failCount); /* Test identity x &~ y == ~(~x | y) */ failCount = 0; for (int i=0; i<size; i++) { BigInteger x = fetchNumber(order1); BigInteger y = fetchNumber(order1); BigInteger z = x.andNot(y); BigInteger w = x.not().or(y).not(); if (!z.equals(w)) failCount++; } report("Logic (&~ | ~)", failCount); } public static void shift() { int failCount1 = 0; int failCount2 = 0; int failCount3 = 0; for (int i=0; i<100; i++) { BigInteger x = fetchNumber(order1); int n = Math.abs(rnd.nextInt()%200); if (!x.shiftLeft(n).equals (x.multiply(BigInteger.valueOf(2L).pow(n)))) failCount1++; BigInteger y[] =x.divideAndRemainder(BigInteger.valueOf(2L).pow(n)); BigInteger z = (x.signum()<0 && y[1].signum()!=0 ? y[0].subtract(BigInteger.ONE) : y[0]); BigInteger b = x.shiftRight(n); if (!b.equals(z)) { System.err.println("Input is "+x.toString(2)); System.err.println("shift is "+n); System.err.println("Divided "+z.toString(2)); System.err.println("Shifted is "+b.toString(2)); if (b.toString().equals(z.toString())) System.err.println("Houston, we have a problem."); failCount2++; } if (!x.shiftLeft(n).shiftRight(n).equals(x)) failCount3++; } report("baz shiftLeft", failCount1); report("baz shiftRight", failCount2); report("baz shiftLeft/Right", failCount3); } public static void divideAndRemainder() { int failCount1 = 0; for (int i=0; i<size; i++) { BigInteger x = fetchNumber(order1).abs(); while(x.compareTo(BigInteger.valueOf(3L)) != 1) x = fetchNumber(order1).abs(); BigInteger z = x.divide(BigInteger.valueOf(2L)); BigInteger y[] = x.divideAndRemainder(x); if (!y[0].equals(BigInteger.ONE)) { failCount1++; System.err.println("fail1 x :"+x); System.err.println(" y :"+y); } else if (!y[1].equals(BigInteger.ZERO)) { failCount1++; System.err.println("fail2 x :"+x); System.err.println(" y :"+y); } y = x.divideAndRemainder(z); if (!y[0].equals(BigInteger.valueOf(2))) { failCount1++; System.err.println("fail3 x :"+x); System.err.println(" y :"+y); } } report("divideAndRemainder I", failCount1); } public static void stringConv() { int failCount = 0; for (int i=0; i<100; i++) { byte xBytes[] = new byte[Math.abs(rnd.nextInt())%100+1]; rnd.nextBytes(xBytes); BigInteger x = new BigInteger(xBytes); for (int radix=2; radix < 37; radix++) { String result = x.toString(radix); BigInteger test = new BigInteger(result, radix); if (!test.equals(x)) { failCount++; System.err.println("BigInteger toString: "+x); System.err.println("Test: "+test); System.err.println(radix); } } } report("String Conversion", failCount); } public static void byteArrayConv() { int failCount = 0; for (int i=0; i<size; i++) { BigInteger x = fetchNumber(order1); while (x.equals(BigInteger.ZERO)) x = fetchNumber(order1); BigInteger y = new BigInteger(x.toByteArray()); if (!x.equals(y)) { failCount++; System.err.println("orig is "+x); System.err.println("new is "+y); } } report("Array Conversion", failCount); } public static void modInv() { int failCount = 0, successCount = 0, nonInvCount = 0; for (int i=0; i<size; i++) { BigInteger x = fetchNumber(order1); while(x.equals(BigInteger.ZERO)) x = fetchNumber(order1); BigInteger m = fetchNumber(order1).abs(); while(m.compareTo(BigInteger.ONE) != 1) m = fetchNumber(order1).abs(); try { BigInteger inv = x.modInverse(m); BigInteger prod = inv.multiply(x).remainder(m); if (prod.signum() == -1) prod = prod.add(m); if (prod.equals(BigInteger.ONE)) successCount++; else failCount++; } catch(ArithmeticException e) { nonInvCount++; } } report("Modular Inverse", failCount); } public static void modExp() { int failCount = 0; for (int i=0; i<size/10; i++) { BigInteger m = fetchNumber(order1).abs(); while(m.compareTo(BigInteger.ONE) != 1) m = fetchNumber(order1).abs(); BigInteger base = fetchNumber(order2); BigInteger exp = fetchNumber(8).abs(); BigInteger z = base.modPow(exp, m); BigInteger w = base.pow(exp.intValue()).mod(m); if (!z.equals(w)) { System.err.println("z is "+z); System.err.println("w is "+w); System.err.println("mod is "+m); System.err.println("base is "+base); System.err.println("exp is "+exp); failCount++; } } report("Exponentiation I", failCount); } // This test is based on Fermat's theorem // which is not ideal because base must not be multiple of modulus // and modulus must be a prime or pseudoprime (Carmichael number) public static void modExp2() { int failCount = 0; for (int i=0; i<10; i++) { BigInteger m = new BigInteger(100, 5, rnd); while(m.compareTo(BigInteger.ONE) != 1) m = new BigInteger(100, 5, rnd); BigInteger exp = m.subtract(BigInteger.ONE); BigInteger base = fetchNumber(order1).abs(); while(base.compareTo(m) != -1) base = fetchNumber(order1).abs(); while(base.equals(BigInteger.ZERO)) base = fetchNumber(order1).abs(); BigInteger one = base.modPow(exp, m); if (!one.equals(BigInteger.ONE)) { System.err.println("m is "+m); System.err.println("base is "+base); System.err.println("exp is "+exp); failCount++; } } report("Exponentiation II", failCount); } private static final int[] mersenne_powers = { 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917 }; private static final long[] carmichaels = { 561,1105,1729,2465,2821,6601,8911,10585,15841,29341,41041,46657,52633, 62745,63973,75361,101101,115921,126217,162401,172081,188461,252601, 278545,294409,314821,334153,340561,399001,410041,449065,488881,512461, 225593397919L }; // Note: testing the larger ones takes too long. private static final int NUM_MERSENNES_TO_TEST = 7; // Note: this constant used for computed Carmichaels, not the array above private static final int NUM_CARMICHAELS_TO_TEST = 5; private static final String[] customer_primes = { "120000000000000000000000000000000019", "633825300114114700748351603131", "1461501637330902918203684832716283019651637554291", "779626057591079617852292862756047675913380626199", "857591696176672809403750477631580323575362410491", "910409242326391377348778281801166102059139832131", "929857869954035706722619989283358182285540127919", "961301750640481375785983980066592002055764391999", "1267617700951005189537696547196156120148404630231", "1326015641149969955786344600146607663033642528339" }; private static final BigInteger ZERO = BigInteger.ZERO; private static final BigInteger ONE = BigInteger.ONE; private static final BigInteger TWO = new BigInteger("2"); private static final BigInteger SIX = new BigInteger("6"); private static final BigInteger TWELVE = new BigInteger("12"); private static final BigInteger EIGHTEEN = new BigInteger("18"); public static void prime() { BigInteger p1, p2, c1; int failCount = 0; // Test consistency for(int i=0; i<10; i++) { p1 = BigInteger.probablePrime(100, rnd); if (!p1.isProbablePrime(100)) { System.err.println("Consistency "+p1.toString(16)); failCount++; } } // Test some known Mersenne primes (2^n)-1 // The array holds the exponents, not the numbers being tested for (int i=0; i<NUM_MERSENNES_TO_TEST; i++) { p1 = new BigInteger("2"); p1 = p1.pow(mersenne_powers[i]); p1 = p1.subtract(BigInteger.ONE); if (!p1.isProbablePrime(100)) { System.err.println("Mersenne prime "+i+ " failed."); failCount++; } } // Test some primes reported by customers as failing in the past for (int i=0; i<customer_primes.length; i++) { p1 = new BigInteger(customer_primes[i]); if (!p1.isProbablePrime(100)) { System.err.println("Customer prime "+i+ " failed."); failCount++; } } // Test some known Carmichael numbers. for (int i=0; i<carmichaels.length; i++) { c1 = BigInteger.valueOf(carmichaels[i]); if(c1.isProbablePrime(100)) { System.err.println("Carmichael "+i+ " reported as prime."); failCount++; } } // Test some computed Carmichael numbers. // Numbers of the form (6k+1)(12k+1)(18k+1) are Carmichael numbers if // each of the factors is prime int found = 0; BigInteger f1 = new BigInteger(40, 100, rnd); while (found < NUM_CARMICHAELS_TO_TEST) { BigInteger k = null; BigInteger f2, f3; f1 = f1.nextProbablePrime(); BigInteger[] result = f1.subtract(ONE).divideAndRemainder(SIX); if (result[1].equals(ZERO)) { k = result[0]; f2 = k.multiply(TWELVE).add(ONE); if (f2.isProbablePrime(100)) { f3 = k.multiply(EIGHTEEN).add(ONE); if (f3.isProbablePrime(100)) { c1 = f1.multiply(f2).multiply(f3); if (c1.isProbablePrime(100)) { System.err.println("Computed Carmichael " +c1.toString(16)); failCount++; } found++; } } } f1 = f1.add(TWO); } // Test some composites that are products of 2 primes for (int i=0; i<50; i++) { p1 = BigInteger.probablePrime(100, rnd); p2 = BigInteger.probablePrime(100, rnd); c1 = p1.multiply(p2); if (c1.isProbablePrime(100)) { System.err.println("Composite failed "+c1.toString(16)); failCount++; } } for (int i=0; i<4; i++) { p1 = BigInteger.probablePrime(600, rnd); p2 = BigInteger.probablePrime(600, rnd); c1 = p1.multiply(p2); if (c1.isProbablePrime(100)) { System.err.println("Composite failed "+c1.toString(16)); failCount++; } } report("Prime", failCount); } private static final long[] primesTo100 = { 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97 }; private static final long[] aPrimeSequence = { 1999999003L, 1999999013L, 1999999049L, 1999999061L, 1999999081L, 1999999087L, 1999999093L, 1999999097L, 1999999117L, 1999999121L, 1999999151L, 1999999171L, 1999999207L, 1999999219L, 1999999271L, 1999999321L, 1999999373L, 1999999423L, 1999999439L, 1999999499L, 1999999553L, 1999999559L, 1999999571L, 1999999609L, 1999999613L, 1999999621L, 1999999643L, 1999999649L, 1999999657L, 1999999747L, 1999999763L, 1999999777L, 1999999811L, 1999999817L, 1999999829L, 1999999853L, 1999999861L, 1999999871L, 1999999873 }; public static void nextProbablePrime() throws Exception { int failCount = 0; BigInteger p1, p2, p3; p1 = p2 = p3 = ZERO; // First test nextProbablePrime on the low range starting at zero for (int i=0; i<primesTo100.length; i++) { p1 = p1.nextProbablePrime(); if (p1.longValue() != primesTo100[i]) { System.err.println("low range primes failed"); System.err.println("p1 is "+p1); System.err.println("expected "+primesTo100[i]); failCount++; } } // Test nextProbablePrime on a relatively small, known prime sequence p1 = BigInteger.valueOf(aPrimeSequence[0]); for (int i=1; i<aPrimeSequence.length; i++) { p1 = p1.nextProbablePrime(); if (p1.longValue() != aPrimeSequence[i]) { System.err.println("prime sequence failed"); failCount++; } } // Next, pick some large primes, use nextProbablePrime to find the // next one, and make sure there are no primes in between for (int i=0; i<100; i+=10) { p1 = BigInteger.probablePrime(50 + i, rnd); p2 = p1.add(ONE); p3 = p1.nextProbablePrime(); while(p2.compareTo(p3) < 0) { if (p2.isProbablePrime(100)){ System.err.println("nextProbablePrime failed"); System.err.println("along range "+p1.toString(16)); System.err.println("to "+p3.toString(16)); failCount++; break; } p2 = p2.add(ONE); } } report("nextProbablePrime", failCount); } public static void serialize() throws Exception { int failCount = 0; String bitPatterns[] = { "ffffffff00000000ffffffff00000000ffffffff00000000", "ffffffffffffffffffffffff000000000000000000000000", "ffffffff0000000000000000000000000000000000000000", "10000000ffffffffffffffffffffffffffffffffffffffff", "100000000000000000000000000000000000000000000000", "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "-ffffffff00000000ffffffff00000000ffffffff00000000", "-ffffffffffffffffffffffff000000000000000000000000", "-ffffffff0000000000000000000000000000000000000000", "-10000000ffffffffffffffffffffffffffffffffffffffff", "-100000000000000000000000000000000000000000000000", "-aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" }; for(int i = 0; i < bitPatterns.length; i++) { BigInteger b1 = new BigInteger(bitPatterns[i], 16); BigInteger b2 = null; File f = new File("serialtest"); try (FileOutputStream fos = new FileOutputStream(f)) { try (ObjectOutputStream oos = new ObjectOutputStream(fos)) { oos.writeObject(b1); oos.flush(); } try (FileInputStream fis = new FileInputStream(f); ObjectInputStream ois = new ObjectInputStream(fis)) { b2 = (BigInteger)ois.readObject(); } if (!b1.equals(b2) || !b1.equals(b1.or(b2))) { failCount++; System.err.println("Serialized failed for hex " + b1.toString(16)); } } f.delete(); } for(int i=0; i<10; i++) { BigInteger b1 = fetchNumber(rnd.nextInt(100)); BigInteger b2 = null; File f = new File("serialtest"); try (FileOutputStream fos = new FileOutputStream(f)) { try (ObjectOutputStream oos = new ObjectOutputStream(fos)) { oos.writeObject(b1); oos.flush(); } try (FileInputStream fis = new FileInputStream(f); ObjectInputStream ois = new ObjectInputStream(fis)) { b2 = (BigInteger)ois.readObject(); } } if (!b1.equals(b2) || !b1.equals(b1.or(b2))) failCount++; f.delete(); } report("Serialize", failCount); } /** * Main to interpret arguments and run several tests. * * Up to three arguments may be given to specify the size of BigIntegers * used for call parameters 1, 2, and 3. The size is interpreted as * the maximum number of decimal digits that the parameters will have. * */ public static void main(String[] args) throws Exception { if (args.length >0) order1 = (int)((Integer.parseInt(args[0]))* 3.333); if (args.length >1) order2 = (int)((Integer.parseInt(args[1]))* 3.333); if (args.length >2) order3 = (int)((Integer.parseInt(args[2]))* 3.333); prime(); nextProbablePrime(); arithmetic(); divideAndRemainder(); pow(); bitCount(); bitLength(); bitOps(); bitwise(); shift(); byteArrayConv(); modInv(); modExp(); modExp2(); stringConv(); serialize(); if (failure) throw new RuntimeException("Failure in BigIntegerTest."); } /* * Get a random or boundary-case number. This is designed to provide * a lot of numbers that will find failure points, such as max sized * numbers, empty BigIntegers, etc. * * If order is less than 2, order is changed to 2. */ private static BigInteger fetchNumber(int order) { boolean negative = rnd.nextBoolean(); int numType = rnd.nextInt(6); BigInteger result = null; if (order < 2) order = 2; switch (numType) { case 0: // Empty result = BigInteger.ZERO; break; case 1: // One result = BigInteger.ONE; break; case 2: // All bits set in number int numBytes = (order+7)/8; byte[] fullBits = new byte[numBytes]; for(int i=0; i<numBytes; i++) fullBits[i] = (byte)0xff; int excessBits = 8*numBytes - order; fullBits[0] &= (1 << (8-excessBits)) - 1; result = new BigInteger(1, fullBits); break; case 3: // One bit in number result = BigInteger.ONE.shiftLeft(rnd.nextInt(order)); break; case 4: // Random bit density int iterations = rnd.nextInt(order-1); result = BigInteger.ONE.shiftLeft(rnd.nextInt(order)); for(int i=0; i<iterations; i++) { BigInteger temp = BigInteger.ONE.shiftLeft( rnd.nextInt(order)); result = result.or(temp); } break; default: // random bits result = new BigInteger(order, rnd); } if (negative) result = result.negate(); return result; } static void report(String testName, int failCount) { System.err.println(testName+": " + (failCount==0 ? "Passed":"Failed("+failCount+")")); if (failCount > 0) failure = true; } }