/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.hadoop.ipc; import java.io.IOException; import java.io.DataInputStream; import java.io.DataOutputStream; import java.io.ByteArrayInputStream; import java.io.ByteArrayOutputStream; import java.nio.ByteBuffer; import java.nio.channels.CancelledKeyException; import java.nio.channels.ClosedChannelException; import java.nio.channels.ReadableByteChannel; import java.nio.channels.SelectionKey; import java.nio.channels.Selector; import java.nio.channels.ServerSocketChannel; import java.nio.channels.SocketChannel; import java.nio.channels.WritableByteChannel; import java.net.BindException; import java.net.InetAddress; import java.net.InetSocketAddress; import java.net.ServerSocket; import java.net.Socket; import java.net.SocketException; import java.net.UnknownHostException; import java.security.PrivilegedActionException; import java.security.PrivilegedExceptionAction; import java.util.AbstractQueue; import java.util.ArrayList; import java.util.LinkedList; import java.util.Iterator; import java.util.Map; import java.util.concurrent.ArrayBlockingQueue; import java.util.concurrent.BlockingQueue; import java.util.concurrent.ConcurrentHashMap; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.TimeUnit; import java.util.concurrent.atomic.AtomicLong; import javax.security.auth.Subject; import org.apache.commons.logging.Log; import org.apache.commons.logging.LogFactory; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.net.NetUtils; import org.apache.hadoop.security.SecurityUtil; import org.apache.hadoop.security.UserGroupInformation; import org.apache.hadoop.io.ObjectWritable; import org.apache.hadoop.io.ShortVoid; import org.apache.hadoop.io.Writable; import org.apache.hadoop.io.WritableUtils; import org.apache.hadoop.util.FlushableLogger; import org.apache.hadoop.util.ReflectionUtils; import org.apache.hadoop.util.StringUtils; import org.apache.hadoop.ipc.RPC.Invocation; import org.apache.hadoop.ipc.metrics.RpcMetrics; import org.apache.hadoop.security.authorize.AuthorizationException; /** An abstract IPC service. IPC calls take a single {@link Writable} as a * parameter, and return a {@link Writable} as their value. A service runs on * a port and is defined by a parameter class and a value class. * * @see Client */ public abstract class Server { /** * The first four bytes of Hadoop RPC connections */ public static final ByteBuffer HEADER = ByteBuffer.wrap("hrpc".getBytes()); // 1 : Introduce ping and server does not throw away RPCs // 3 : Introduce the protocol into the RPC connection header public static final byte CURRENT_VERSION = 3; /** * How many calls per handler are allowed in the queue. */ private static final String IPC_SERVER_HANDLER_QUEUE_SIZE_KEY = "ipc.server.handler.queue.size"; /** * How many calls/handler are allowed in the queue. */ private static final int MAX_QUEUE_SIZE_PER_HANDLER = 100; /** * Initial and max size of response buffer */ static int INITIAL_RESP_BUF_SIZE = 10240; static int MAX_RESP_BUF_SIZE = 1024*1024; int PURGE_INTERVAL = 900000; // 15mins long cleanupInterval = 10000; //the minimum interval between //two cleanup runs public static final String IPC_SERVER_RPC_MAX_RESPONSE_SIZE_KEY = "ipc.server.max.response.size"; public static final int IPC_SERVER_RPC_MAX_RESPONSE_SIZE_DEFAULT = 1024 * 1024; public static final String IPC_SERVER_RPC_READ_THREADS_KEY = "ipc.server.read.threadpool.size"; public static final String IPC_SERVER_CLIENT_IDLETHRESHOLD = "ipc.client.idlethreshold"; public static final String IPC_SERVER_CLIENT_CONN_MAXIDLETIME = "ipc.client.connection.maxidletime"; public static final int IPC_SERVER_RPC_READ_THREADS_DEFAULT = 1; public static final Log LOG = LogFactory.getLog(Server.class); // immediate flush logger private static final Log FLOG = FlushableLogger.getLogger(LOG); private static final ThreadLocal<Server> SERVER = new ThreadLocal<Server>(); private static final Map<String, Class<?>> PROTOCOL_CACHE = new ConcurrentHashMap<String, Class<?>>(); private static final Map<Long, Call> delayedCalls = new ConcurrentHashMap<Long, Server.Call>(); private static final AtomicLong delayedRpcId = new AtomicLong(); static Class<?> getProtocolClass(String protocolName, Configuration conf) throws ClassNotFoundException { Class<?> protocol = PROTOCOL_CACHE.get(protocolName); if (protocol == null) { protocol = conf.getClassByName(protocolName); PROTOCOL_CACHE.put(protocolName, protocol); } return protocol; } /** Returns the server instance called under or null. May be called under * {@link #call(Writable, long)} implementations, and under {@link Writable} * methods of paramters and return values. Permits applications to access * the server context.*/ public static Server get() { return SERVER.get(); } /** This is set to Call object before Handler invokes an RPC and reset * after the call returns. */ private static final ThreadLocal<Call> CurCall = new ThreadLocal<Call>(); /** * This is the UGI of original caller, it is set when call is made through proxy layer and * overrides UGI of proxy process. This must be set by RPC handler after original UGI gets * deserialized. */ private static final ThreadLocal<UserGroupInformation> OrigUGI = new ThreadLocal<UserGroupInformation>(); /** Returns the remote side ip address when invoked inside an RPC * Returns null incase of an error. */ public static InetAddress getRemoteIp() { Call call = CurCall.get(); if (call != null) { return call.connection.socket.getInetAddress(); } return null; } /** * Gives access to the current call object in the code handling the response * @return The object of the call for the current thread */ public static Object getCall() { return CurCall.get(); } /** * Gives access to the subject of the current call. */ public static UserGroupInformation getCurrentUGI() { try { // Check original caller's UGI in case call went through proxy UserGroupInformation origUGI = OrigUGI.get(); if (origUGI != null) { return origUGI; } // If original caller's UGI is not set then we get the UGI of connecting client Call call = CurCall.get(); if (call != null) { return call.connection.header.getUgi(); } } catch (Exception e) { } return null; } /** * Sets original caller's UGI and associated Subject, used by NameNode proxy layer */ public static void setOrignalCaller(UserGroupInformation ugi) { OrigUGI.set(ugi); } /** * If invoked from the RPC handling code will mark this call as * delayed response. It returns the id of the delayed call. * The response will only be sent once sendDelayedResponse method * is called with the id returned from this one. * @return id of the delayed response. */ public static long delayResponse() { Call call = CurCall.get(); long res = 0; if (call != null) { call.delayResponse(); res = delayedRpcId.getAndIncrement(); delayedCalls.put(res, call); } return res; } public static void sendDelayedResponse(long id) throws IOException { Call call = delayedCalls.remove(id); if (call != null) { call.sendDelayedResponse(); } } /** Returns remote address as a string when invoked inside an RPC. * Returns null in case of an error. */ public static String getRemoteAddress() { InetAddress addr = getRemoteIp(); return (addr == null) ? null : addr.getHostAddress(); } private String bindAddress; private int port; // port we listen on private int handlerCount; // number of handler threads private int readThreads; // number of read threads private boolean supportOldJobConf; // whether supports job conf as parameter private Class<? extends Writable> paramClass; // class of call parameters private final boolean isInvocationClass; private int maxIdleTime; // the maximum idle time after // which a client may be disconnected private int thresholdIdleConnections; // the number of idle connections // after which we will start // cleaning up idle // connections protected final RpcMetrics rpcMetrics; private Configuration conf; private int maxQueueSize; private final int maxRespSize; private int socketSendBufferSize; private final boolean tcpNoDelay; // if T then disable Nagle's Algorithm volatile private boolean running = true; // true while server runs private BlockingQueue<Call> callQueue; // queued calls //maintain a list final ConnectionSet connectionSet; //of client connections private Listener listener = null; private Responder responder = null; private Handler[] handlers = null; private long pollingInterval = 1000; private boolean directHandling = false; /** * A convenience method to bind to a given address and report * better exceptions if the address is not a valid host. * @param socket the socket to bind * @param address the address to bind to * @param backlog the number of connections allowed in the queue * @throws BindException if the address can't be bound * @throws UnknownHostException if the address isn't a valid host name * @throws IOException other random errors from bind */ public static void bind(ServerSocket socket, InetSocketAddress address, int backlog) throws IOException { try { socket.bind(address, backlog); } catch (BindException e) { BindException bindException = new BindException("Problem binding to " + address + " : " + e.getMessage()); bindException.initCause(e); throw bindException; } catch (SocketException e) { // If they try to bind to a different host's address, give a better // error message. if ("Unresolved address".equals(e.getMessage())) { throw new UnknownHostException("Invalid hostname for server: " + address.getHostName()); } else { throw e; } } } /** A call queued for handling. */ private static class Call { private int id; // the client's call id private Writable param; // the parameter passed private Connection connection; // connection to client private long timestamp; // the time received when response is null // the time served when response is not null private ByteBuffer response; // the response for this call private boolean delayResponse = false; private Responder responder; public Call(int id, Writable param, Connection connection, Responder responder) { this.id = id; this.param = param; this.connection = connection; this.timestamp = System.currentTimeMillis(); this.response = null; this.responder = responder; } @Override public String toString() { return param.toString() + " from " + connection.toString(); } public synchronized void setResponse(ByteBuffer response) { this.response = response; } public synchronized void delayResponse() { this.delayResponse = true; } public synchronized void sendDelayedResponse() throws IOException { this.delayResponse = false; if (response != null) { responder.doRespond(this); } } public synchronized boolean delayed() { return this.delayResponse; } } private String getIpcServerName() { return "IPC Server listener on " + port; } /** Listens on the socket. Creates jobs for the handler threads*/ private class Listener extends Thread { private ServerSocketChannel acceptChannel = null; //the accept channel private Selector selector = null; //the selector that we use for the server // private Selector[] readSelectors = null; private Reader[] readers = null; private int currentReader = 0; private InetSocketAddress address; //the address we bind at private long lastCleanupRunTime = 0; //the last time when a cleanup connec- //-tion (for idle connections) ran private int backlogLength = conf.getInt("ipc.server.listen.queue.size", 128); private ExecutorService readPool; volatile boolean cleanConnectionsAfterShutdown = true; public Listener() throws IOException { address = new InetSocketAddress(bindAddress, port); // Create a new server socket and set to non blocking mode acceptChannel = ServerSocketChannel.open(); acceptChannel.configureBlocking(false); // Bind the server socket to the local host and port bind(acceptChannel.socket(), address, backlogLength); port = acceptChannel.socket().getLocalPort(); //Could be an ephemeral port // create a selector; selector= Selector.open(); readers = new Reader[readThreads]; readPool = Executors.newFixedThreadPool(readThreads); for (int i = 0; i < readThreads; i++) { Selector readSelector = Selector.open(); Reader reader = new Reader(readSelector, i); readers[i] = reader; readPool.execute(reader); } // Register accepts on the server socket with the selector. acceptChannel.register(selector, SelectionKey.OP_ACCEPT); this.setName(getIpcServerName()); this.setDaemon(true); } private class Reader implements Runnable { private ByteArrayOutputStream buf; private final String name; private Selector readSelector = null; private AbstractQueue<SocketChannel> newChannels = new ArrayBlockingQueue<SocketChannel>( 1024 * 16); Reader(Selector readSelector, int instanceNumber) { this.readSelector = readSelector; if (directHandling) { buf = new ByteArrayOutputStream(INITIAL_RESP_BUF_SIZE); } this.name = "IPC SocketReader "+ instanceNumber + " on " + port; } public void run() { FLOG.info(name + ": starting"); synchronized (this) { while (running) { SelectionKey key = null; try { readSelector.select(); processNewChannels(); Iterator<SelectionKey> iter = readSelector.selectedKeys().iterator(); while (iter.hasNext()) { key = iter.next(); iter.remove(); if (key.isValid()) { if (key.isReadable()) { doRead(key, buf); if (directHandling && buf.size() > maxRespSize) { buf = new ByteArrayOutputStream(INITIAL_RESP_BUF_SIZE); } } } key = null; } } catch (InterruptedException e) { if (running) { // unexpected -- log it LOG.info(getName() + " caught: " + StringUtils.stringifyException(e)); } } catch (IOException ex) { LOG.error("Error in Reader", ex); } } try { readSelector.close(); } catch (IOException ex) {} } } void addChannelToQueue(SocketChannel channel) { newChannels.add(channel); readSelector.wakeup(); } void processNewChannel(SocketChannel channel) throws IOException { try { SelectionKey readKey = this.registerChannel(channel); Connection c = new Connection(readKey, channel, System.currentTimeMillis()); readKey.attach(c); connectionSet.addConnection(c); if (LOG.isDebugEnabled()) { LOG.debug("Server connection from " + c.toString() + "; # active connections: " + getNumOpenConnections() + "; # queued calls: " + callQueue.size()); } } catch (IOException e) { if (LOG.isInfoEnabled()) { LOG.info("Faill to set up server connection from " + NetUtils.getSrcNameFromSocketChannel(channel) + "; # active connections: " + connectionSet.numConnections + "; # queued calls: " + callQueue.size()); } } } void processNewChannels() throws IOException { SocketChannel channel = null; while ((channel = newChannels.poll()) != null) { processNewChannel(channel); } } public synchronized SelectionKey registerChannel(SocketChannel channel) throws IOException { return channel.register(readSelector, SelectionKey.OP_READ); } } /** cleanup connections from connectionList. Choose a random range * to scan and also have a limit on the number of the connections * that will be cleanedup per run. The criteria for cleanup is the time * for which the connection was idle. If 'force' is true then all * connections will be looked at for the cleanup. */ private void cleanupConnections(boolean force) { if (force || getNumOpenConnections() > thresholdIdleConnections) { long currentTime = System.currentTimeMillis(); if (!force && (currentTime - lastCleanupRunTime) < cleanupInterval) { return; } connectionSet.cleanIdleConnections(!force, getName()); lastCleanupRunTime = System.currentTimeMillis(); } } @Override public void run() { FLOG.info(getName() + ": starting"); SERVER.set(Server.this); while (running) { SelectionKey key = null; try { selector.select(cleanupInterval); Iterator<SelectionKey> iter = selector.selectedKeys().iterator(); while (iter.hasNext()) { key = iter.next(); iter.remove(); try { if (key.isValid()) { if (key.isAcceptable()) doAccept(key); else if (key.isReadable()) doRead(key, null); } } catch (IOException e) { } key = null; } } catch (OutOfMemoryError e) { // we can run out of memory if we have too many threads // log the event and sleep for a minute and give // some thread(s) a chance to finish LOG.warn("Out of Memory in server select", e); closeCurrentConnection(key, e); cleanupConnections(true); try { Thread.sleep(60000); } catch (Exception ie) {} } catch (InterruptedException e) { if (running) { // unexpected -- log it LOG.info(getName() + " caught: " + StringUtils.stringifyException(e)); } } catch (Exception e) { closeCurrentConnection(key, e); } cleanupConnections(false); } LOG.info("Stopping " + this.getName()); synchronized (this) { try { acceptChannel.close(); selector.close(); } catch (IOException e) { } selector= null; acceptChannel= null; if (cleanConnectionsAfterShutdown) { cleanConnections(); } readPool.shutdownNow(); } } private void closeCurrentConnection(SelectionKey key, Throwable e) { if (key != null) { Connection c = (Connection)key.attachment(); if (c != null) { if (LOG.isDebugEnabled()) LOG.debug(getName() + ": disconnecting client " + c.getHostAddress()); closeConnection(c); c = null; } } } // The method that will return the next read selector to work with // Simplistic implementation of round robin for now Reader getReader() { currentReader = (currentReader + 1) % readers.length; return readers[currentReader]; } InetSocketAddress getAddress() { return (InetSocketAddress)acceptChannel.socket().getLocalSocketAddress(); } void doAccept(SelectionKey key) throws IOException, OutOfMemoryError { ServerSocketChannel server = (ServerSocketChannel) key.channel(); // accept up to backlogLength/10 connections for (int i=0; i < backlogLength/10; i++) { SocketChannel channel = server.accept(); if (channel==null) return; channel.configureBlocking(false); channel.socket().setTcpNoDelay(tcpNoDelay); Reader reader = getReader(); reader.addChannelToQueue(channel); if (LOG.isDebugEnabled()) { LOG.debug("Add connection to queue from " + NetUtils.getSrcNameFromSocketChannel(channel) + "; # active connections: " + getNumOpenConnections() + "; # queued calls: " + callQueue.size()); } } } void doRead(SelectionKey key, ByteArrayOutputStream buf) throws InterruptedException { int count = 0; Connection c = (Connection)key.attachment(); if (c == null) { return; } c.setLastContact(System.currentTimeMillis()); try { count = c.readAndProcess(buf); } catch (InterruptedException ieo) { LOG.info(getName() + ": readAndProcess caught InterruptedException", ieo); throw ieo; } catch (Exception e) { LOG.info(getName() + ": readAndProcess threw exception " + e + " from client " + c.getHostAddress() + ". Count of bytes read: " + count, e); count = -1; //so that the (count < 0) block is executed } if (count < 0) { if (LOG.isDebugEnabled()) LOG.debug(getName() + ": disconnecting client " + c.getHostAddress() + ". Number of active connections: "+ getNumOpenConnections()); closeConnection(c); c = null; } else { c.setLastContact(System.currentTimeMillis()); } } synchronized void doStop() { if (selector != null) { selector.wakeup(); Thread.yield(); } if (acceptChannel != null) { try { acceptChannel.socket().close(); } catch (IOException e) { LOG.info(getName() + ":Exception in closing listener socket. " + e); } } readPool.shutdownNow(); } } // Sends responses of RPC back to clients. private class Responder extends Thread { private Selector writeSelector; private int pending; // connections waiting to register volatile boolean responderExtension = false; Responder() throws IOException { this.setName("IPC Server Responder"); this.setDaemon(true); writeSelector = Selector.open(); // create a selector pending = 0; } @Override public void run() { FLOG.info(getName() + ": starting"); SERVER.set(Server.this); long lastPurgeTime = 0; // last check for old calls. while (running || responderExtension) { try { waitPending(); // If a channel is being registered, wait. writeSelector.select(PURGE_INTERVAL); Iterator<SelectionKey> iter = writeSelector.selectedKeys().iterator(); while (iter.hasNext()) { SelectionKey key = iter.next(); iter.remove(); try { if (key.isValid() && key.isWritable()) { doAsyncWrite(key); } } catch (IOException e) { LOG.info(getName() + ": doAsyncWrite threw exception " + e); } } long now = System.currentTimeMillis(); if (now < lastPurgeTime + PURGE_INTERVAL) { continue; } lastPurgeTime = now; // // If there were some calls that have not been sent out for a // long time, discard them. // LOG.debug("Checking for old call responses."); ArrayList<Call> calls; // get the list of channels from list of keys. synchronized (writeSelector.keys()) { calls = new ArrayList<Call>(writeSelector.keys().size()); iter = writeSelector.keys().iterator(); while (iter.hasNext()) { SelectionKey key = iter.next(); Call call = (Call)key.attachment(); if (call != null && key.channel() == call.connection.channel) { calls.add(call); } } } for(Call call : calls) { try { doPurge(call, now); } catch (IOException e) { LOG.warn("Error in purging old calls " + e); } } } catch (OutOfMemoryError e) { // // we can run out of memory if we have too many threads // log the event and sleep for a minute and give // some thread(s) a chance to finish // LOG.warn("Out of Memory in server select", e); try { Thread.sleep(60000); } catch (Exception ie) {} } catch (Exception e) { LOG.warn("Exception in Responder " + StringUtils.stringifyException(e)); } } LOG.info("Stopping " + this.getName()); } private void doAsyncWrite(SelectionKey key) throws IOException { Call call = (Call)key.attachment(); if (call == null) { return; } if (key.channel() != call.connection.channel) { throw new IOException("doAsyncWrite: bad channel"); } synchronized(call.connection.responseQueue) { if (processResponse(call.connection.responseQueue, false)) { try { key.interestOps(0); } catch (CancelledKeyException e) { /* The Listener/reader might have closed the socket. * We don't explicitly cancel the key, so not sure if this will * ever fire. * This warning could be removed. */ LOG.warn("Exception while changing ops : " + e); } } } } // // Remove calls that have been pending in the responseQueue // for a long time. // private void doPurge(Call call, long now) throws IOException { LinkedList<Call> responseQueue = call.connection.responseQueue; synchronized (responseQueue) { Iterator<Call> iter = responseQueue.listIterator(0); while (iter.hasNext()) { call = iter.next(); if (now > call.timestamp + PURGE_INTERVAL) { closeConnection(call.connection); break; } } } } // Processes one response. Returns true if there are no more pending // data for this channel. // private boolean processResponse(LinkedList<Call> responseQueue, boolean inHandler) throws IOException { boolean error = true; boolean done = false; // there is more data for this channel. int numElements = 0; Call call = null; try { synchronized (responseQueue) { // // If there are no items for this channel, then we are done // numElements = responseQueue.size(); if (numElements == 0) { error = false; return true; // no more data for this channel. } // // Extract the first call // call = responseQueue.removeFirst(); SocketChannel channel = call.connection.channel; if (!directHandling && LOG.isDebugEnabled()) { LOG.debug(getName() + ": responding to #" + call.id + " from " + call.connection); } // // Send as much data as we can in the non-blocking fashion // int numBytes = channelWrite(channel, call.response); if (numBytes < 0) { return true; } if (!call.response.hasRemaining()) { call.connection.decRpcCount(); if (numElements == 1) { // last call fully processes. done = true; // no more data for this channel. } else { done = false; // more calls pending to be sent. } if (!directHandling && LOG.isDebugEnabled()) { LOG.debug(getName() + ": responding to #" + call.id + " from " + call.connection + " Wrote " + numBytes + " bytes."); } } else { // // If we were unable to write the entire response out, then // insert in Selector queue. // call.connection.responseQueue.addFirst(call); if (inHandler) { // set the serve time when the response has to be sent later call.timestamp = System.currentTimeMillis(); incPending(); try { // Wakeup the thread blocked on select, only then can the call // to channel.register() complete. writeSelector.wakeup(); channel.register(writeSelector, SelectionKey.OP_WRITE, call); } catch (ClosedChannelException e) { //Its ok. channel might be closed else where. done = true; } finally { decPending(); } } if (!directHandling && LOG.isDebugEnabled()) { LOG.debug(getName() + ": responding to #" + call.id + " from " + call.connection + " Wrote partial " + numBytes + " bytes."); } } error = false; // everything went off well } } finally { if (error && call != null) { LOG.warn(getName()+", call " + call + ": output error"); done = true; // error. no more data for this channel. closeConnection(call.connection); } } return done; } // // Enqueue a response from the application. // void doRespond(Call call) throws IOException { synchronized (call.connection.responseQueue) { call.connection.responseQueue.addLast(call); if (call.connection.responseQueue.size() == 1) { processResponse(call.connection.responseQueue, true); } } } private synchronized void incPending() { // call waiting to be enqueued. pending++; } private synchronized void decPending() { // call done enqueueing. pending--; notify(); } private synchronized void waitPending() throws InterruptedException { while (pending > 0) { wait(); } } synchronized void doStop() { try { if (!this.isAlive()) return; if (writeSelector != null) { writeSelector.wakeup(); Thread.yield(); } waitForConnections(); responder.responderExtension = false; // best effort, if we didn't send everything within timeout // just kill the reponder responder.interrupt(); cleanConnections(); } catch (Throwable t) { if (responder != null) responder.interrupt(); } } } /** Reads calls from a connection and queues them for handling. */ class Connection { private boolean versionRead = false; //if initial signature and //version are read private boolean headerRead = false; //if the connection header that //follows version is read. private SocketChannel channel; private ByteBuffer data; private ByteBuffer dataLengthBuffer; LinkedList<Call> responseQueue; private volatile int rpcCount = 0; // number of outstanding rpcs private long lastContact; private int dataLength; private Socket socket; // Cache the remote host & port info so that even if the socket is // disconnected, we can say where it used to connect to. private String hostAddress; private int remotePort; ConnectionHeader header = new ConnectionHeader(); Class<?> protocol; Subject user = null; // Fake 'call' for failed authorization response private final int AUTHROIZATION_FAILED_CALLID = -1; private final Call authFailedCall = new Call(AUTHROIZATION_FAILED_CALLID, null, null, null); private ByteArrayOutputStream authFailedResponse = new ByteArrayOutputStream(); public Connection(SelectionKey key, SocketChannel channel, long lastContact) { this.channel = channel; this.lastContact = lastContact; this.data = null; this.dataLengthBuffer = ByteBuffer.allocate(4); this.socket = channel.socket(); InetAddress addr = socket.getInetAddress(); if (addr == null) { this.hostAddress = "*Unknown*"; } else { this.hostAddress = addr.getHostAddress(); } this.remotePort = socket.getPort(); this.responseQueue = new LinkedList<Call>(); if (socketSendBufferSize != 0) { try { socket.setSendBufferSize(socketSendBufferSize); } catch (IOException e) { LOG.warn("Connection: unable to set socket send buffer size to " + socketSendBufferSize); } } } @Override public String toString() { return getHostAddress() + ":" + remotePort; } public String getHostAddress() { return hostAddress; } public void setLastContact(long lastContact) { this.lastContact = lastContact; } public long getLastContact() { return lastContact; } /* Return true if the connection has no outstanding rpc */ private boolean isIdle() { return rpcCount == 0; } /* Decrement the outstanding RPC count */ private void decRpcCount() { rpcCount--; } /* Increment the outstanding RPC count */ private void incRpcCount() { rpcCount++; } boolean timedOut(long currentTime) { if (isIdle() && currentTime - lastContact > maxIdleTime) return true; return false; } public int readAndProcess(ByteArrayOutputStream buf) throws IOException, InterruptedException { while (true) { /* Read at most one RPC. If the header is not read completely yet * then iterate until we read first RPC or until there is no data left. */ int count = -1; if (dataLengthBuffer.remaining() > 0) { count = channelRead(channel, dataLengthBuffer); if (count < 0 || dataLengthBuffer.remaining() > 0) return count; } if (!versionRead) { //Every connection is expected to send the header. ByteBuffer versionBuffer = ByteBuffer.allocate(1); count = channelRead(channel, versionBuffer); if (count <= 0) { return count; } int version = versionBuffer.get(0); dataLengthBuffer.flip(); if (!HEADER.equals(dataLengthBuffer) || version != CURRENT_VERSION) { //Warning is ok since this is not supposed to happen. LOG.warn("Incorrect header or version mismatch from " + hostAddress + ":" + remotePort + " got version " + version + " expected version " + CURRENT_VERSION); return -1; } dataLengthBuffer.clear(); versionRead = true; continue; } boolean rpcCountIncreased = false; if (data == null) { dataLengthBuffer.flip(); dataLength = dataLengthBuffer.getInt(); if (dataLength == Client.PING_CALL_ID) { dataLengthBuffer.clear(); return 0; //ping message } data = ByteBuffer.allocate(dataLength); incRpcCount(); // Increment the rpc count rpcCountIncreased = true; } count = channelRead(channel, data); if (data.remaining() == 0) { dataLengthBuffer.clear(); data.flip(); if (headerRead) { processData(buf); data = null; return count; } else { processHeader(); headerRead = true; data = null; if (rpcCountIncreased) { // RPC counter has been incremented, but since we only read // header, we need to offset it. decRpcCount(); } // Authorize the connection try { authorize(user, header); if (LOG.isDebugEnabled()) { LOG.debug("Successfully authorized " + header); } } catch (AuthorizationException ae) { authFailedCall.connection = this; setupResponse(authFailedResponse, authFailedCall, Status.FATAL, null, ae.getClass().getName(), ae.getMessage()); responder.doRespond(authFailedCall); // Close this connection return -1; } continue; } } return count; } } /// Reads the connection header following version private void processHeader() throws IOException { DataInputStream in = new DataInputStream(new ByteArrayInputStream(data.array())); header.readFields(in); try { String protocolClassName = header.getProtocol(); if (protocolClassName != null) { protocol = getProtocolClass(header.getProtocol(), conf); } } catch (ClassNotFoundException cnfe) { throw new IOException("Unknown protocol: " + header.getProtocol()); } // TODO: Get the user name from the GSS API for Kerberbos-based security // Create the user subject user = SecurityUtil.getSubject(header.getUgi()); } private void processData(ByteArrayOutputStream buf) throws IOException, InterruptedException { DataInputStream dis = new DataInputStream(new ByteArrayInputStream(data.array())); int id = dis.readInt(); // try to read an id boolean isDebugEnabled = LOG.isDebugEnabled(); if (isDebugEnabled) { LOG.debug(" got #" + id); } Writable param; if (isInvocationClass) { Invocation inv = new Invocation(); inv.setConf(conf); param = inv; } else { param = ReflectionUtils.newInstance(paramClass, conf, supportOldJobConf); // read param } param.readFields(dis); Call call = new Call(id, param, this, responder); if (directHandling) { if (isDebugEnabled) { LOG.debug("Staring processing call #" + id); } processCall(call, buf); if (isDebugEnabled) { LOG.debug("Finish processing call #" + id); } } else { callQueue.put(call); // queue the call; maybe blocked here // added one call to the queue rpcMetrics.callQueueLen.inc(1); } } synchronized void close() throws IOException { data = null; dataLengthBuffer = null; if (!channel.isOpen()) return; try {socket.shutdownOutput();} catch(Exception e) {} if (channel.isOpen()) { try {channel.close();} catch(Exception e) {} } try {socket.close();} catch(Exception e) {} } } private void processCall(final Call call, final ByteArrayOutputStream buf) throws IOException { boolean isDebugEnabled = LOG.isDebugEnabled(); if (isDebugEnabled) { LOG.debug(Thread.currentThread().getName() + ": has #" + call.id + " from " + call.connection); } String errorClass = null; String error = null; Writable value = null; // Original caller's UGI can be set from handler only, for now have to assume that there was // no proxy and orignal caller is an actual caller. setOrignalCaller(null); CurCall.set(call); try { if (directHandling) { value = call(call.connection.protocol, call.param, call.timestamp); } else { // Make the call as the user via Subject.doAs, thus associating // the call with the Subject value = Subject.doAs(call.connection.user, new PrivilegedExceptionAction<Writable>() { @Override public Writable run() throws Exception { // make the call return call(call.connection.protocol, call.param, call.timestamp); } }); } } catch (PrivilegedActionException pae) { Exception e = pae.getException(); LOG.info(Thread.currentThread().getName()+", call "+call+": error: " + e, e); errorClass = e.getClass().getName(); error = StringUtils.stringifyException(e); } catch (Throwable e) { LOG.info(Thread.currentThread().getName()+", call "+call+": error: " + e, e); errorClass = e.getClass().getName(); error = StringUtils.stringifyException(e); } setOrignalCaller(null); CurCall.set(null); if (directHandling && value != null && error == null && value instanceof ObjectWritable && ((ObjectWritable) value).getDeclaredClass().equals(ShortVoid.class)) { // we want to write the response directly for short voids // 12 bytes = (int) call.id + (int) status + ShortVoid serialized len if (isDebugEnabled) { LOG.debug("Start to construct result of call #" + call.id); } ByteBuffer response = ByteBuffer .allocate(8 + ShortVoid.serializedName.length); response.putInt(call.id); response.put(Status.SUCCESSBYTES); response.put(ShortVoid.serializedName); response.position(0); call.setResponse(response); } else { if (isDebugEnabled) { LOG.debug("Start to construct result using setupResponse of call #" + call.id); } setupResponse(buf, call, (error == null) ? Status.SUCCESS : Status.ERROR, value, errorClass, error); } if (!call.delayed()) { responder.doRespond(call); } } /** Handles queued calls . */ private class Handler extends Thread { public Handler(int instanceNumber) { this.setDaemon(true); this.setName("IPC Server handler "+ instanceNumber + " on " + port); } @Override public void run() { FLOG.info(getName() + ": starting"); SERVER.set(Server.this); ByteArrayOutputStream buf = new ByteArrayOutputStream(INITIAL_RESP_BUF_SIZE); while (running) { try { final Call call = callQueue.poll(pollingInterval, TimeUnit.MILLISECONDS); // pop the queue; maybe blocked here for up to a second // poll() is used instead of take() to enable clean shutdown if (call == null) continue; // we picked up one call from the queue rpcMetrics.callQueueLen.inc(-1); processCall(call, buf); // monitor the size of the buffer rpcMetrics.rpcResponseSize.inc(buf.size()); // Discard the large buf and reset it back to // smaller size to freeup heap if (buf.size() > maxRespSize) { LOG.warn("Large response size " + buf.size() + " for call " + call.toString()); buf = new ByteArrayOutputStream(INITIAL_RESP_BUF_SIZE); } } catch (InterruptedException e) { if (running) { // unexpected -- log it LOG.info(getName() + " caught: " + StringUtils.stringifyException(e)); } } catch (Exception e) { LOG.info(getName() + " caught: " + StringUtils.stringifyException(e)); } } LOG.info(getName() + ": exiting"); } } protected Server(String bindAddress, int port, Class<? extends Writable> paramClass, int handlerCount, Configuration conf) throws IOException { this(bindAddress, port, paramClass, handlerCount, conf, true); } protected Server(String bindAddress, int port, Class<? extends Writable> paramClass, int handlerCount, Configuration conf, boolean supportOldJobConf) throws IOException { this(bindAddress, port, paramClass, handlerCount, conf, Integer .toString(port), supportOldJobConf); } /** Constructs a server listening on the named port and address. Parameters passed must * be of the named class. The <code>handlerCount</handlerCount> determines * the number of handler threads that will be used to process calls. * */ protected Server(String bindAddress, int port, Class<? extends Writable> paramClass, int handlerCount, Configuration conf, String serverName, boolean supportOldJobConf) throws IOException { this.bindAddress = bindAddress; this.conf = conf; this.port = port; this.paramClass = paramClass; this.isInvocationClass = paramClass.equals(Invocation.class); this.directHandling = conf.getBoolean("ipc.direct.handling", false); if (directHandling) { LOG.info("Starting direct handler server"); // reader threads are directly calling protocol methods this.handlerCount = 0; // make the direct buffer size bigger for faster reads NIO_BUFFER_LIMIT = 8 * NIO_BUFFER_LIMIT_BASE; // initial response buffer size must be at least the size // of max NIO_BUFFER_LIMIT (see channelIO()) INITIAL_RESP_BUF_SIZE = NIO_BUFFER_LIMIT; } else { // reader threads populate callQueue, calls are executed by handlers this.handlerCount = handlerCount; } this.socketSendBufferSize = 0; this.maxQueueSize = handlerCount * conf.getInt( IPC_SERVER_HANDLER_QUEUE_SIZE_KEY, MAX_QUEUE_SIZE_PER_HANDLER); this.maxRespSize = conf.getInt(IPC_SERVER_RPC_MAX_RESPONSE_SIZE_KEY, IPC_SERVER_RPC_MAX_RESPONSE_SIZE_DEFAULT); this.readThreads = conf.getInt(IPC_SERVER_RPC_READ_THREADS_KEY, IPC_SERVER_RPC_READ_THREADS_DEFAULT); this.supportOldJobConf = supportOldJobConf; conf.setBoolean("rpc.support.jobconf", supportOldJobConf); this.callQueue = new ArrayBlockingQueue<Call>(maxQueueSize); this.maxIdleTime = 2*conf.getInt(IPC_SERVER_CLIENT_CONN_MAXIDLETIME, 1000); this.thresholdIdleConnections = conf.getInt(IPC_SERVER_CLIENT_IDLETHRESHOLD, 4000); // Start the listener here and let it bind to the port listener = new Listener(); this.port = listener.getAddress().getPort(); this.rpcMetrics = new RpcMetrics(serverName, Integer.toString(this.port), this); // For now, we use readThreads*4 as connection bucket numbers for simplicity. this.connectionSet = new ConnectionSet(getIpcServerName(), readThreads * 4, rpcMetrics); this.tcpNoDelay = conf.getBoolean("ipc.server.tcpnodelay", false); this.pollingInterval = conf.getLong("rpc.polling.interval", 1000); // Create the responder here responder = new Responder(); } void cleanConnections() { connectionSet.cleanConnections(); } void waitForConnections() { int retries = 10; while (retries-- > 0) { if (connectionSet.ifConnectionsClean()) { break; } try { Thread.sleep(1000); } catch (InterruptedException e) { return; } } } private void closeConnection(Connection connection) { connectionSet.removeConnection(connection); try { connection.close(); } catch (IOException e) { } } /** * Setup response for the IPC Call. * * @param response buffer to serialize the response into * @param call {@link Call} to which we are setting up the response * @param status {@link Status} of the IPC call * @param rv return value for the IPC Call, if the call was successful * @param errorClass error class, if the the call failed * @param error error message, if the call failed * @throws IOException */ private void setupResponse(ByteArrayOutputStream response, Call call, Status status, Writable rv, String errorClass, String error) throws IOException { response.reset(); DataOutputStream out = new DataOutputStream(response); out.writeInt(call.id); // write call id if (status == Status.SUCCESS) { out.write(Status.SUCCESSBYTES); rv.write(out); } else { out.writeInt(status.state); // write status WritableUtils.writeString(out, errorClass); WritableUtils.writeString(out, error); } call.setResponse(ByteBuffer.wrap(response.toByteArray())); } Configuration getConf() { return conf; } /** Sets the socket buffer size used for responding to RPCs */ public void setSocketSendBufSize(int size) { this.socketSendBufferSize = size; } /** * Denotes whether the server is alive * @return true if the server is alive, false otherwise. */ public boolean isAlive() { return listener.isAlive(); } /** Starts the service. Must be called before any calls will be handled. */ public synchronized void start() throws IOException { if (responder.isAlive()) { // The server is already running return; } responder.start(); listener.start(); handlers = new Handler[handlerCount]; for (int i = 0; i < handlerCount; i++) { handlers[i] = new Handler(i); handlers[i].start(); } } /** * Waits for all RPC handlers to exit. This ensures that no further RPC * calls would be processed by this server. */ public synchronized void waitForHandlers() throws InterruptedException { if (handlers != null) { for (int i = 0; i < handlerCount; i++) { if (handlers[i] != null) { handlers[i].join(); } } } } public synchronized void stop() { // by default interrupt handlers and stop the responder stop(true); } /** Stops the service. No new calls will be handled after this is called. */ public synchronized void stop(boolean interruptHandlers) { LOG.info("Stopping server on " + port); if (!interruptHandlers) { // keep responder working responder.responderExtension = true; // do not purge connections in listener listener.cleanConnectionsAfterShutdown = false; } else { responder.interrupt(); } running = false; if (interruptHandlers && handlers != null) { for (int i = 0; i < handlerCount; i++) { if (handlers[i] != null) { handlers[i].interrupt(); } } } listener.interrupt(); listener.doStop(); notifyAll(); if (this.rpcMetrics != null) { this.rpcMetrics.shutdown(); } } public synchronized void stopResponder() { responder.doStop(); } /** Wait for the server to be stopped. * Does not wait for all subthreads to finish. * See {@link #stop()}. */ public synchronized void join() throws InterruptedException { while (running) { wait(); } } /** * Return the socket (ip+port) on which the RPC server is listening to. * @return the socket (ip+port) on which the RPC server is listening to. */ public InetSocketAddress getListenerAddress() { return listener.getAddress(); } /** * Called for each call. * @deprecated Use {@link #call(Class, Writable, long)} instead */ @Deprecated public Writable call(Writable param, long receiveTime) throws IOException { return call(null, param, receiveTime); } /** Called for each call. */ public abstract Writable call(Class<?> protocol, Writable param, long receiveTime) throws IOException; /** * Authorize the incoming client connection. * * @param user client user * @param connection incoming connection * @throws AuthorizationException when the client isn't authorized to talk the protocol */ public void authorize(Subject user, ConnectionHeader connection) throws AuthorizationException {} /** * The number of open RPC conections * @return the number of open rpc connections */ public int getNumOpenConnections() { return connectionSet.numConnections.get(); } /** * The number of rpc calls in the queue. * @return The number of rpc calls in the queue. */ public int getCallQueueLen() { return callQueue.size(); } /** * When the read or write buffer size is larger than this limit, i/o will be * done in chunks of this size. Most RPC requests and responses would be * be smaller. */ private static final int NIO_BUFFER_LIMIT_BASE = 8 * 1024; private static int NIO_BUFFER_LIMIT = NIO_BUFFER_LIMIT_BASE; //should not be more than 64KB. /** * This is a wrapper around {@link WritableByteChannel#write(ByteBuffer)}. * If the amount of data is large, it writes to channel in smaller chunks. * This is to avoid jdk from creating many direct buffers as the size of * buffer increases. This also minimizes extra copies in NIO layer * as a result of multiple write operations required to write a large * buffer. * * @see WritableByteChannel#write(ByteBuffer) */ private static int channelWrite(WritableByteChannel channel, ByteBuffer buffer) throws IOException { return (buffer.remaining() <= NIO_BUFFER_LIMIT) ? channel.write(buffer) : channelIO(null, channel, buffer); } /** * This is a wrapper around {@link ReadableByteChannel#read(ByteBuffer)}. * If the amount of data is large, it writes to channel in smaller chunks. * This is to avoid jdk from creating many direct buffers as the size of * ByteBuffer increases. There should not be any performance degredation. * * @see ReadableByteChannel#read(ByteBuffer) */ private static int channelRead(ReadableByteChannel channel, ByteBuffer buffer) throws IOException { return (buffer.remaining() <= NIO_BUFFER_LIMIT) ? channel.read(buffer) : channelIO(channel, null, buffer); } /** * Helper for {@link #channelRead(ReadableByteChannel, ByteBuffer)} * and {@link #channelWrite(WritableByteChannel, ByteBuffer)}. Only * one of readCh or writeCh should be non-null. * * @see #channelRead(ReadableByteChannel, ByteBuffer) * @see #channelWrite(WritableByteChannel, ByteBuffer) */ private static int channelIO(ReadableByteChannel readCh, WritableByteChannel writeCh, ByteBuffer buf) throws IOException { int originalLimit = buf.limit(); int initialRemaining = buf.remaining(); int ret = 0; while (buf.remaining() > 0) { try { int ioSize = Math.min(buf.remaining(), NIO_BUFFER_LIMIT); buf.limit(buf.position() + ioSize); ret = (readCh == null) ? writeCh.write(buf) : readCh.read(buf); if (ret < ioSize) { break; } } finally { buf.limit(originalLimit); } } int nBytes = initialRemaining - buf.remaining(); return (nBytes > 0) ? nBytes : ret; } }