/******************************************************************************* * Copyright 2011 See AUTHORS file. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. ******************************************************************************/ package com.glview.libgdx.graphics.math; import java.io.Serializable; /** Encapsulates a 2D vector. Allows chaining methods by returning a reference to itself * @author badlogicgames@gmail.com */ public class Vector2 implements Serializable, Vector<Vector2> { private static final long serialVersionUID = 913902788239530931L; public final static Vector2 X = new Vector2(1, 0); public final static Vector2 Y = new Vector2(0, 1); public final static Vector2 Zero = new Vector2(0, 0); /** the x-component of this vector **/ public float x; /** the y-component of this vector **/ public float y; /** Constructs a new vector at (0,0) */ public Vector2 () { } /** Constructs a vector with the given components * @param x The x-component * @param y The y-component */ public Vector2 (float x, float y) { this.x = x; this.y = y; } /** Constructs a vector from the given vector * @param v The vector */ public Vector2 (Vector2 v) { set(v); } /** @return a copy of this vector */ public Vector2 cpy () { return new Vector2(this); } /** @return The euclidian length */ public float len () { return (float)Math.sqrt(x * x + y * y); } /** @return The squared euclidian length */ public float len2 () { return x * x + y * y; } /** Sets this vector from the given vector * @param v The vector * @return This vector for chaining */ public Vector2 set (Vector2 v) { x = v.x; y = v.y; return this; } /** Sets the components of this vector * @param x The x-component * @param y The y-component * @return This vector for chaining */ public Vector2 set (float x, float y) { this.x = x; this.y = y; return this; } /** Subtracts the given vector from this vector. * @param v The vector * @return This vector for chaining */ public Vector2 sub (Vector2 v) { x -= v.x; y -= v.y; return this; } /** Normalizes this vector. Does nothing if it is zero. * @return This vector for chaining */ public Vector2 nor () { float len = len(); if (len != 0) { x /= len; y /= len; } return this; } /** Adds the given vector to this vector * @param v The vector * @return This vector for chaining */ public Vector2 add (Vector2 v) { x += v.x; y += v.y; return this; } /** Adds the given components to this vector * @param x The x-component * @param y The y-component * @return This vector for chaining */ public Vector2 add (float x, float y) { this.x += x; this.y += y; return this; } /** @param v The other vector * @return The dot product between this and the other vector */ public float dot (Vector2 v) { return x * v.x + y * v.y; } /** Multiplies this vector by a scalar * @param scalar The scalar * @return This vector for chaining */ public Vector2 scl (float scalar) { x *= scalar; y *= scalar; return this; } /** @deprecated Use {@link #scl(float)} instead. */ public Vector2 mul (float scalar) { return scl(scalar); } /** Multiplies this vector by a scalar * @return This vector for chaining */ public Vector2 scl (float x, float y) { this.x *= x; this.y *= y; return this; } /** @deprecated Use {@link #scl(float, float)} instead. */ public Vector2 mul (float x, float y) { return scl(x, y); } /** Multiplies this vector by a vector * @return This vector for chaining */ public Vector2 scl (Vector2 v) { this.x *= v.x; this.y *= v.y; return this; } /** @deprecated Use {@link #scl(Vector2)} instead. */ public Vector2 mul (Vector2 v) { return scl(v); } public Vector2 div (float value) { return this.scl(1 / value); } public Vector2 div (float vx, float vy) { return this.scl(1 / vx, 1 / vy); } public Vector2 div (Vector2 other) { return this.scl(1 / other.x, 1 / other.y); } /** @param v The other vector * @return the distance between this and the other vector */ public float dst (Vector2 v) { final float x_d = v.x - x; final float y_d = v.y - y; return (float)Math.sqrt(x_d * x_d + y_d * y_d); } /** @param x The x-component of the other vector * @param y The y-component of the other vector * @return the distance between this and the other vector */ public float dst (float x, float y) { final float x_d = x - this.x; final float y_d = y - this.y; return (float)Math.sqrt(x_d * x_d + y_d * y_d); } /** @param v The other vector * @return the squared distance between this and the other vector */ public float dst2 (Vector2 v) { final float x_d = v.x - x; final float y_d = v.y - y; return x_d * x_d + y_d * y_d; } /** @param x The x-component of the other vector * @param y The y-component of the other vector * @return the squared distance between this and the other vector */ public float dst2 (float x, float y) { final float x_d = x - this.x; final float y_d = y - this.y; return x_d * x_d + y_d * y_d; } /** Limits this vector's length to given value * @param limit Max length * @return This vector for chaining */ public Vector2 limit (float limit) { if (len2() > limit * limit) { nor(); scl(limit); } return this; } /** Clamps this vector's length to given value * @param min Min length * @param max Max length * @return This vector for chaining */ public Vector2 clamp (float min, float max) { final float l2 = len2(); if (l2 == 0f) return this; if (l2 > max * max) return nor().scl(max); if (l2 < min * min) return nor().scl(min); return this; } public String toString () { return "[" + x + ":" + y + "]"; } /** Substracts the other vector from this vector. * @param x The x-component of the other vector * @param y The y-component of the other vector * @return This vector for chaining */ public Vector2 sub (float x, float y) { this.x -= x; this.y -= y; return this; } /** Left-multiplies this vector by the given matrix * @param mat the matrix * @return this vector */ public Vector2 mul (Matrix3 mat) { float x = this.x * mat.val[0] + this.y * mat.val[3] + mat.val[6]; float y = this.x * mat.val[1] + this.y * mat.val[4] + mat.val[7]; this.x = x; this.y = y; return this; } /** Calculates the 2D cross product between this and the given vector. * @param v the other vector * @return the cross product */ public float crs (Vector2 v) { return this.x * v.y - this.y * v.x; } /** Calculates the 2D cross product between this and the given vector. * @param x the x-coordinate of the other vector * @param y the y-coordinate of the other vector * @return the cross product */ public float crs (float x, float y) { return this.x * y - this.y * x; } /** @return the angle in degrees of this vector (point) relative to the x-axis. Angles are towards the positive y-axis (typically * counter-clockwise) and between 0 and 360. */ public float angle () { float angle = (float)Math.atan2(y, x) * MathUtils.radiansToDegrees; if (angle < 0) angle += 360; return angle; } /** Sets the angle of the vector in degrees relative to the x-axis, towards the positive y-axis (typically counter-clockwise). * @param degrees The angle to set. */ public Vector2 setAngle (float degrees) { this.set(len(), 0f); this.rotate(degrees); return this; } /** Rotates the Vector2 by the given angle, counter-clockwise assuming the y-axis points up. * @param degrees the angle in degrees */ public Vector2 rotate (float degrees) { float rad = degrees * MathUtils.degreesToRadians; float cos = (float)Math.cos(rad); float sin = (float)Math.sin(rad); float newX = this.x * cos - this.y * sin; float newY = this.x * sin + this.y * cos; this.x = newX; this.y = newY; return this; } /** Rotates the Vector2 by 90 degrees in the specified direction, where >= 0 is counter-clockwise and < 0 is clockwise. */ public Vector2 rotate90 (int dir) { float x = this.x; if (dir >= 0) { this.x = -y; y = x; } else { this.x = y; y = -x; } return this; } /** Linearly interpolates between this vector and the target vector by alpha which is in the range [0,1]. The result is stored * in this vector. * * @param target The target vector * @param alpha The interpolation coefficient * @return This vector for chaining. */ public Vector2 lerp (Vector2 target, float alpha) { final float invAlpha = 1.0f - alpha; this.x = (x * invAlpha) + (target.x * alpha); this.y = (y * invAlpha) + (target.y * alpha); return this; } @Override public int hashCode () { final int prime = 31; int result = 1; result = prime * result + NumberUtils.floatToIntBits(x); result = prime * result + NumberUtils.floatToIntBits(y); return result; } @Override public boolean equals (Object obj) { if (this == obj) return true; if (obj == null) return false; if (getClass() != obj.getClass()) return false; Vector2 other = (Vector2)obj; if (NumberUtils.floatToIntBits(x) != NumberUtils.floatToIntBits(other.x)) return false; if (NumberUtils.floatToIntBits(y) != NumberUtils.floatToIntBits(other.y)) return false; return true; } /** Compares this vector with the other vector, using the supplied epsilon for fuzzy equality testing. * @param obj * @param epsilon * @return whether the vectors are the same. */ public boolean epsilonEquals (Vector2 obj, float epsilon) { if (obj == null) return false; if (Math.abs(obj.x - x) > epsilon) return false; if (Math.abs(obj.y - y) > epsilon) return false; return true; } /** Compares this vector with the other vector, using the supplied epsilon for fuzzy equality testing. * @param x * @param y * @param epsilon * @return whether the vectors are the same. */ public boolean epsilonEquals (float x, float y, float epsilon) { if (Math.abs(x - this.x) > epsilon) return false; if (Math.abs(y - this.y) > epsilon) return false; return true; } public Vector2 zero(){ return this.Zero; } }