package edu.princeton.cs.algs4.ch15; import edu.princeton.cs.introcs.*; /**************************************************************************** * Compilation: javac UF.java * Execution: java UF < input.txt * Dependencies: StdIn.java StdOut.java * Data files: http://algs4.cs.princeton.edu/15uf/tinyUF.txt * http://algs4.cs.princeton.edu/15uf/mediumUF.txt * http://algs4.cs.princeton.edu/15uf/largeUF.txt * * Weighted quick-union by rank with path compression by halving. * * % java UF < tinyUF.txt * 4 3 * 3 8 * 6 5 * 9 4 * 2 1 * 5 0 * 7 2 * 6 1 * 2 components * ****************************************************************************/ /** * The <tt>UF</tt> class represents a <em>union-find data type</em> * (also known as the <em>disjoint-sets data type</em>). * It supports the <em>union</em> and <em>find</em> operations, * along with a <em>connected</em> operation for determinig whether * two sites in the same component and a <em>count</em> operation that * returns the total number of components. * <p> * The union-find data type models connectivity among a set of <em>N</em> * sites, named 0 through <em>N</em> – 1. * The <em>is-connected-to</em> relation must be an * <em>equivalence relation</em>: * <ul> * <p><li> <em>Reflexive</em>: <em>p</em> is connected to <em>p</em>. * <p><li> <em>Symmetric</em>: If <em>p</em> is connected to <em>q</em>, * <em>q</em> is connected to <em>p</em>. * <p><li> <em>Transitive</em>: If <em>p</em> is connected to <em>q</em> * and <em>q</em> is connected to <em>r</em>, then * <em>p</em> is connected to <em>r</em>. * </ul> * An equivalence relation partitions the sites into * <em>equivalence classes</em> (or <em>components</em>). In this case, * two sites are in the same component if and only if they are connected. * Both sites and components are identified with integers between 0 and * <em>N</em> – 1. * Initially, there are <em>N</em> components, with each site in its * own component. The <em>component identifier</em> of a component * (also known as the <em>root</em>, <em>canonical element</em>, <em>leader</em>, * or <em>set representative</em>) is one of the sites in the component: * two sites have the same component identifier if and only if they are * in the same component. * <ul> * <p><li><em>union</em>(<em>p</em>, <em>q</em>) adds a * connection between the two sites <em>p</em> and <em>q</em>. * If <em>p</em> and <em>q</em> are in different components, * then it replaces * these two components with a new component that is the union of * the two. * <p><li><em>find</em>(<em>p</em>) returns the component * identifier of the component containing <em>p</em>. * <p><li><em>connected</em>(<em>p</em>, <em>q</em>) * returns true if both <em>p</em> and <em>q</em> * are in the same component, and false otherwise. * <p><li><em>count</em>() returns the number of components. * </ul> * The component identifier of a component can change * only when the component itself changes during a call to * <em>union</em>—it cannot change during a call * to <em>find</em>, <em>connected</em>, or <em>count</em>. * <p> * This implementation uses weighted quick union by rank with path compression * by halving. * Initializing a data structure with <em>N</em> sites takes linear time. * Afterwards, the <em>union</em>, <em>find</em>, and <em>connected</em> * operations take logarithmic time (in the worst case) and the * <em>count</em> operation takes constant time. * Moreover, the amortized time per <em>union</em>, <em>find</em>, * and <em>connected</em> operation has inverse Ackermann complexity. * For alternate implementations of the same API, see * {@link QuickUnionUF}, {@link QuickFindUF}, and {@link WeightedQuickUnionUF}. * * <p> * For additional documentation, see <a href="http://algs4.cs.princeton.edu/15uf">Section 1.5</a> of * <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne. * * @author Robert Sedgewick * @author Kevin Wayne */ public class UF { private int[] id; // id[i] = parent of i private byte[] rank; // rank[i] = rank of subtree rooted at i (cannot be more than 31) private int count; // number of components /** * Initializes an empty union-find data structure with <tt>N</tt> * isolated components <tt>0</tt> through <tt>N-1</tt> * @throws java.lang.IllegalArgumentException if <tt>N < 0</tt> * @param N the number of sites */ public UF(int N) { if (N < 0) throw new IllegalArgumentException(); count = N; id = new int[N]; rank = new byte[N]; for (int i = 0; i < N; i++) { id[i] = i; rank[i] = 0; } } /** * Returns the component identifier for the component containing site <tt>p</tt>. * @param p the integer representing one object * @return the component identifier for the component containing site <tt>p</tt> * @throws java.lang.IndexOutOfBoundsException unless <tt>0 ≤ p < N</tt> */ public int find(int p) { if (p < 0 || p >= id.length) throw new IndexOutOfBoundsException(); while (p != id[p]) { id[p] = id[id[p]]; // path compression by halving p = id[p]; } return p; } /** * Returns the number of components. * @return the number of components (between <tt>1</tt> and <tt>N</tt>) */ public int count() { return count; } /** * Are the two sites <tt>p</tt> and <tt>q</tt> in the same component? * @param p the integer representing one site * @param q the integer representing the other site * @return true if the two sites <tt>p</tt> and <tt>q</tt> are in the same component; false otherwise * @throws java.lang.IndexOutOfBoundsException unless * both <tt>0 ≤ p < N</tt> and <tt>0 ≤ q < N</tt> */ public boolean connected(int p, int q) { return find(p) == find(q); } /** * Merges the component containing site <tt>p</tt> with the * the component containing site <tt>q</tt>. * @param p the integer representing one site * @param q the integer representing the other site * @throws java.lang.IndexOutOfBoundsException unless * both <tt>0 ≤ p < N</tt> and <tt>0 ≤ q < N</tt> */ public void union(int p, int q) { int i = find(p); int j = find(q); if (i == j) return; // make root of smaller rank point to root of larger rank if (rank[i] < rank[j]) id[i] = j; else if (rank[i] > rank[j]) id[j] = i; else { id[j] = i; rank[i]++; } count--; } /** * Reads in a an integer <tt>N</tt> and a sequence of pairs of integers * (between <tt>0</tt> and <tt>N-1</tt>) from standard input, where each integer * in the pair represents some site; * if the sites are in different components, merge the two components * and print the pair to standard output. */ public static void main(String[] args) { int N = StdIn.readInt(); UF uf = new UF(N); while (!StdIn.isEmpty()) { int p = StdIn.readInt(); int q = StdIn.readInt(); if (uf.connected(p, q)) continue; uf.union(p, q); StdOut.println(p + " " + q); } StdOut.println(uf.count() + " components"); } } /************************************************************************* * Copyright 2002-2012, Robert Sedgewick and Kevin Wayne. * * This file is part of algs4-package.jar, which accompanies the textbook * * Algorithms, 4th edition by Robert Sedgewick and Kevin Wayne, * Addison-Wesley Professional, 2011, ISBN 0-321-57351-X. * http://algs4.cs.princeton.edu * * * algs4-package.jar is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * algs4-package.jar is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with algs4-package.jar. If not, see http://www.gnu.org/licenses. *************************************************************************/