/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.tomcat.util.threads; import java.util.Collection; import java.util.concurrent.LinkedBlockingQueue; import java.util.concurrent.RejectedExecutionException; import java.util.concurrent.TimeUnit; /** * As task queue specifically designed to run with a thread pool executor. * The task queue is optimised to properly utilize threads within * a thread pool executor. If you use a normal queue, the executor will spawn threads * when there are idle threads and you wont be able to force items unto the queue itself * @author fhanik * */ public class TaskQueue extends LinkedBlockingQueue<Runnable> { private static final long serialVersionUID = 1L; private ThreadPoolExecutor parent = null; // no need to be volatile, the one times when we change and read it occur in // a single thread (the one that did stop a context and fired listeners) private Integer forcedRemainingCapacity = null; public TaskQueue() { super(); } public TaskQueue(int capacity) { super(capacity); } public TaskQueue(Collection<? extends Runnable> c) { super(c); } public void setParent(ThreadPoolExecutor tp) { parent = tp; } public boolean force(Runnable o) { if ( parent.isShutdown() ) throw new RejectedExecutionException("Executor not running, can't force a command into the queue"); return super.offer(o); //forces the item onto the queue, to be used if the task is rejected } public boolean force(Runnable o, long timeout, TimeUnit unit) throws InterruptedException { if ( parent.isShutdown() ) throw new RejectedExecutionException("Executor not running, can't force a command into the queue"); return super.offer(o,timeout,unit); //forces the item onto the queue, to be used if the task is rejected } @Override public boolean offer(Runnable o) { //we can't do any checks if (parent==null) return super.offer(o); //we are maxed out on threads, simply queue the object if (parent.getPoolSize() == parent.getMaximumPoolSize()) return super.offer(o); //we have idle threads, just add it to the queue if (parent.getSubmittedCount()<(parent.getPoolSize())) return super.offer(o); //if we have less threads than maximum force creation of a new thread if (parent.getPoolSize()<parent.getMaximumPoolSize()) return false; //if we reached here, we need to add it to the queue return super.offer(o); } @Override public Runnable poll(long timeout, TimeUnit unit) throws InterruptedException { Runnable runnable = super.poll(timeout, unit); if (runnable == null && parent != null) { // the poll timed out, it gives an opportunity to stop the current // thread if needed to avoid memory leaks. parent.stopCurrentThreadIfNeeded(); } return runnable; } @Override public Runnable take() throws InterruptedException { if (parent != null && parent.currentThreadShouldBeStopped()) { return poll(parent.getKeepAliveTime(TimeUnit.MILLISECONDS), TimeUnit.MILLISECONDS); // yes, this may return null (in case of timeout) which normally // does not occur with take() // but the ThreadPoolExecutor implementation allows this } return super.take(); } @Override public int remainingCapacity() { if (forcedRemainingCapacity != null) { // ThreadPoolExecutor.setCorePoolSize checks that // remainingCapacity==0 to allow to interrupt idle threads // I don't see why, but this hack allows to conform to this // "requirement" return forcedRemainingCapacity.intValue(); } return super.remainingCapacity(); } public void setForcedRemainingCapacity(Integer forcedRemainingCapacity) { this.forcedRemainingCapacity = forcedRemainingCapacity; } }