/** * (C) Copyright IBM Corp. 2010, 2015 * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *  */ package com.ibm.bi.dml.runtime.io; import java.io.BufferedWriter; import java.io.IOException; import java.io.OutputStreamWriter; import java.util.ArrayList; import java.util.List; import java.util.concurrent.Callable; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.Future; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.mapred.JobConf; import com.ibm.bi.dml.conf.DMLConfig; import com.ibm.bi.dml.hops.OptimizerUtils; import com.ibm.bi.dml.runtime.controlprogram.parfor.stat.InfrastructureAnalyzer; import com.ibm.bi.dml.runtime.matrix.data.CSVFileFormatProperties; import com.ibm.bi.dml.runtime.matrix.data.MatrixBlock; import com.ibm.bi.dml.runtime.matrix.data.OutputInfo; import com.ibm.bi.dml.runtime.matrix.data.SparseRow; import com.ibm.bi.dml.runtime.util.MapReduceTool; /** * */ public class WriterTextCSVParallel extends WriterTextCSV { public WriterTextCSVParallel( CSVFileFormatProperties props ) { super( props ); } /** * * @param fileName * @param src * @param rlen * @param clen * @param nnz * @throws IOException */ @Override protected void writeCSVMatrixToHDFS( Path path, JobConf job, MatrixBlock src, long rlen, long clen, long nnz, CSVFileFormatProperties props ) throws IOException { //estimate output size and number of output blocks (min 1) int numPartFiles = (int)(OptimizerUtils.estimateSizeTextOutput(src.getNumRows(), src.getNumColumns(), src.getNonZeros(), OutputInfo.CSVOutputInfo) / InfrastructureAnalyzer.getHDFSBlockSize()); numPartFiles = Math.max(numPartFiles, 1); //determine degree of parallelism int numThreads = OptimizerUtils.getParallelTextWriteParallelism(); numThreads = Math.min(numThreads, numPartFiles); //fall back to sequential write if dop is 1 (e.g., <128MB) in order to create single file if( numThreads <= 1 ) { super.writeCSVMatrixToHDFS(path, job, src, rlen, clen, nnz, props); return; } //create directory for concurrent tasks MapReduceTool.createDirIfNotExistOnHDFS(path.toString(), DMLConfig.DEFAULT_SHARED_DIR_PERMISSION); //create and execute tasks try { ExecutorService pool = Executors.newFixedThreadPool(numThreads); ArrayList<WriteCSVTask> tasks = new ArrayList<WriteCSVTask>(); int blklen = (int)Math.ceil((double)rlen / numThreads); for(int i=0; i<numThreads & i*blklen<rlen; i++) { Path newPath = new Path(path, String.format("0-m-%05d",i)); tasks.add(new WriteCSVTask(newPath, job, src, i*blklen, (int)Math.min((i+1)*blklen, rlen), props)); } //wait until all tasks have been executed List<Future<Object>> rt = pool.invokeAll(tasks); pool.shutdown(); //check for exceptions for( Future<Object> task : rt ) task.get(); } catch (Exception e) { throw new IOException("Failed parallel write of csv output.", e); } } /** * * */ private static class WriteCSVTask implements Callable<Object> { private JobConf _job = null; private MatrixBlock _src = null; private Path _path =null; private int _rl = -1; private int _ru = -1; private CSVFileFormatProperties _props = null; public WriteCSVTask(Path path, JobConf job, MatrixBlock src, int rl, int ru, CSVFileFormatProperties props) { _path = path; _job = job; _src = src; _rl = rl; _ru = ru; _props = props; } @Override public Object call() throws Exception { FileSystem _fs = FileSystem.get(_job); BufferedWriter bw = null; boolean sparse = _src.isInSparseFormat(); int cols = _src.getNumColumns(); try { //for obj reuse and preventing repeated buffer re-allocations StringBuilder sb = new StringBuilder(); bw = new BufferedWriter(new OutputStreamWriter(_fs.create(_path,true))); _props = (_props==null)? new CSVFileFormatProperties() : _props; String delim = _props.getDelim(); //Pattern.quote(csvProperties.getDelim()); boolean csvsparse = _props.isSparse(); // Write header line, if needed if( _props.hasHeader() && _rl == 0 ) { //write row chunk-wise to prevent OOM on large number of columns for( int bj=0; bj<cols; bj+=WriterTextCSV.BLOCKSIZE_J ) { for( int j=bj; j < Math.min(cols,bj+WriterTextCSV.BLOCKSIZE_J); j++) { sb.append("C"+ (j+1)); if ( j < cols-1 ) sb.append(delim); } bw.write( sb.toString() ); sb.setLength(0); } sb.append('\n'); bw.write( sb.toString() ); sb.setLength(0); } // Write data lines if( sparse ) //SPARSE { SparseRow[] sparseRows = _src.getSparseRows(); for( int i=_rl; i<_ru; i++ ) { //write row chunk-wise to prevent OOM on large number of columns int prev_jix = -1; if( sparseRows!=null && i<sparseRows.length && sparseRows[i]!=null && !sparseRows[i].isEmpty() ) { SparseRow arow = sparseRows[i]; int alen = arow.size(); int[] aix = arow.getIndexContainer(); double[] avals = arow.getValueContainer(); for(int j=0; j < alen; j++) { int jix = aix[j]; // output empty fields, if needed for( int j2=prev_jix; j2<jix-1; j2++ ) { if( !csvsparse ) sb.append('0'); sb.append(delim); //flush buffered string if( j2%WriterTextCSV.BLOCKSIZE_J==0 ){ bw.write( sb.toString() ); sb.setLength(0); } } // output the value (non-zero) sb.append( avals[j] ); if( jix < cols-1) sb.append(delim); bw.write( sb.toString() ); sb.setLength(0); //flush buffered string if( jix%WriterTextCSV.BLOCKSIZE_J==0 ){ bw.write( sb.toString() ); sb.setLength(0); } prev_jix = jix; } } // Output empty fields at the end of the row. // In case of an empty row, output (clen-1) empty fields for( int bj=prev_jix+1; bj<cols; bj+=WriterTextCSV.BLOCKSIZE_J ) { for( int j = bj; j < Math.min(cols,bj+WriterTextCSV.BLOCKSIZE_J); j++) { if( !csvsparse ) sb.append('0'); if( j < cols-1 ) sb.append(delim); } bw.write( sb.toString() ); sb.setLength(0); } sb.append('\n'); bw.write( sb.toString() ); sb.setLength(0); } } else //DENSE { for( int i=_rl; i<_ru; i++ ) { //write row chunk-wise to prevent OOM on large number of columns for( int bj=0; bj<cols; bj+=WriterTextCSV.BLOCKSIZE_J ) { for( int j=bj; j<Math.min(cols,bj+WriterTextCSV.BLOCKSIZE_J); j++ ) { double lvalue = _src.getValueDenseUnsafe(i, j); if( lvalue != 0 ) //for nnz sb.append(lvalue); else if( !csvsparse ) sb.append('0'); if( j != cols-1 ) sb.append(delim); } bw.write( sb.toString() ); sb.setLength(0); } sb.append('\n'); bw.write( sb.toString() ); //same as append sb.setLength(0); } } } finally { IOUtilFunctions.closeSilently(bw); } return null; } } }