/** * (C) Copyright IBM Corp. 2010, 2015 * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *  */ package com.ibm.bi.dml.lops; import com.ibm.bi.dml.lops.LopProperties.ExecLocation; import com.ibm.bi.dml.lops.LopProperties.ExecType; import com.ibm.bi.dml.lops.compile.JobType; import com.ibm.bi.dml.parser.Expression.DataType; import com.ibm.bi.dml.parser.Expression.ValueType; /** * Lop to compute covariance between two 1D matrices * */ public class CoVariance extends Lop { /** * Constructor to perform covariance. * input1 <- data * (prior to this lop, input vectors need to attached together using CombineBinary or CombineTertiary) * @throws LopsException */ public CoVariance(Lop input1, DataType dt, ValueType vt) throws LopsException { this(input1, dt, vt, ExecType.MR); } public CoVariance(Lop input1, DataType dt, ValueType vt, ExecType et) throws LopsException { super(Lop.Type.CoVariance, dt, vt); init(input1, null, null, et); } public CoVariance(Lop input1, Lop input2, DataType dt, ValueType vt, ExecType et) throws LopsException { this(input1, input2, null, dt, vt, et); } public CoVariance(Lop input1, Lop input2, Lop input3, DataType dt, ValueType vt, ExecType et) throws LopsException { super(Lop.Type.CoVariance, dt, vt); init(input1, input2, input3, et); } private void init(Lop input1, Lop input2, Lop input3, ExecType et) throws LopsException { /* * When et = MR: covariance lop will have a single input lop, which * denote the combined input data -- output of combinebinary, if unweighed; * and output combineteriaty (if weighted). * * When et = CP: covariance lop must have at least two input lops, which * denote the two input columns on which covariance is computed. It also * takes an optional third arguments, when weighted covariance is computed. */ addInput(input1); input1.addOutput(this); boolean breaksAlignment = false; boolean aligner = false; boolean definesMRJob = true; if ( et == ExecType.MR ) { lps.addCompatibility(JobType.CM_COV); lps.setProperties(inputs, et, ExecLocation.MapAndReduce, breaksAlignment, aligner, definesMRJob); } else //CP/SPARK { definesMRJob = false; if ( input2 == null ) { throw new LopsException(this.printErrorLocation() + "Invalid inputs to covariance lop."); } addInput(input2); input2.addOutput(this); if ( input3 != null ) { addInput(input3); input3.addOutput(this); } lps.addCompatibility(JobType.INVALID); lps.setProperties(inputs, et, ExecLocation.ControlProgram, breaksAlignment, aligner, definesMRJob); } } @Override public String toString() { return "Operation = coVariance"; } /** * Function two generate CP instruction to compute unweighted covariance. * input1 -> input column 1 * input2 -> input column 2 */ @Override public String getInstructions(String input1, String input2, String output) { StringBuilder sb = new StringBuilder(); sb.append( getExecType() ); sb.append( Lop.OPERAND_DELIMITOR ); sb.append( "cov" ); sb.append( OPERAND_DELIMITOR ); sb.append( getInputs().get(0).prepInputOperand(input1)); sb.append( OPERAND_DELIMITOR ); sb.append( getInputs().get(1).prepInputOperand(input2)); sb.append( OPERAND_DELIMITOR ); sb.append( this.prepOutputOperand(output)); return sb.toString(); } /** * Function two generate CP instruction to compute weighted covariance. * input1 -> input column 1 * input2 -> input column 2 * input3 -> weights */ @Override public String getInstructions(String input1, String input2, String input3, String output) { StringBuilder sb = new StringBuilder(); sb.append( getExecType() ); sb.append( Lop.OPERAND_DELIMITOR ); sb.append( "cov" ); sb.append( OPERAND_DELIMITOR ); sb.append( getInputs().get(0).prepInputOperand(input1)); sb.append( OPERAND_DELIMITOR ); sb.append( getInputs().get(1).prepInputOperand(input2)); sb.append( OPERAND_DELIMITOR ); sb.append( getInputs().get(2).prepInputOperand(input3)); sb.append( OPERAND_DELIMITOR ); sb.append( this.prepOutputOperand(output)); return sb.toString(); } /** * Function to generate MR version of covariance instruction. * input_index -> denote the "combined" input columns and weights, * when applicable. */ @Override public String getInstructions(int input_index, int output_index) { StringBuilder sb = new StringBuilder(); sb.append( getExecType() ); sb.append( Lop.OPERAND_DELIMITOR ); sb.append( "cov" ); sb.append( OPERAND_DELIMITOR ); sb.append( getInputs().get(0).prepInputOperand(input_index)); sb.append( OPERAND_DELIMITOR ); sb.append ( this.prepInputOperand(output_index)); return sb.toString(); } }