/** * (C) Copyright IBM Corp. 2010, 2015 * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *  */ package com.ibm.bi.dml.lops; import com.ibm.bi.dml.lops.LopProperties.ExecLocation; import com.ibm.bi.dml.lops.LopProperties.ExecType; import com.ibm.bi.dml.lops.compile.JobType; import com.ibm.bi.dml.parser.Expression.DataType; import com.ibm.bi.dml.parser.Expression.ValueType; /** * Lop to perform following operations: with one operand -- NOT(A), ABS(A), * SQRT(A), LOG(A) with two operands where one of them is a scalar -- H=H*i, * H=H*5, EXP(A,2), LOG(A,2) * */ public class Unary extends Lop { public enum OperationTypes { ADD, SUBTRACT, SUBTRACTRIGHT, MULTIPLY, MULTIPLY2, DIVIDE, MODULUS, INTDIV, MINUS1_MULTIPLY, POW, POW2, LOG, MAX, MIN, NOT, ABS, SIN, COS, TAN, ASIN, ACOS, ATAN, SQRT, EXP, Over, LESS_THAN, LESS_THAN_OR_EQUALS, GREATER_THAN, GREATER_THAN_OR_EQUALS, EQUALS, NOT_EQUALS, ROUND, CEIL, FLOOR, MR_IQM, INVERSE, CUMSUM, CUMPROD, CUMMIN, CUMMAX, SPROP, SIGMOID, SELP, SUBTRACT_NZ, LOG_NZ, NOTSUPPORTED }; OperationTypes operation; Lop valInput; /** * Constructor to perform a unary operation with 2 inputs * * @param input * @param op */ public Unary(Lop input1, Lop input2, OperationTypes op, DataType dt, ValueType vt, ExecType et) { super(Lop.Type.UNARY, dt, vt); init(input1, input2, op, dt, vt, et); } public Unary(Lop input1, Lop input2, OperationTypes op, DataType dt, ValueType vt) { super(Lop.Type.UNARY, dt, vt); init(input1, input2, op, dt, vt, ExecType.MR); } private void init(Lop input1, Lop input2, OperationTypes op, DataType dt, ValueType vt, ExecType et) { operation = op; if (input1.getDataType() == DataType.MATRIX) valInput = input2; else valInput = input1; this.addInput(input1); input1.addOutput(this); this.addInput(input2); input2.addOutput(this); // By definition, this lop should not break alignment boolean breaksAlignment = false; boolean aligner = false; boolean definesMRJob = false; if ( et == ExecType.MR ) { /* * This lop CAN NOT be executed in PARTITION, SORT, CM_COV, and COMBINE * jobs MMCJ: only in mapper. */ lps.addCompatibility(JobType.ANY); lps.removeNonPiggybackableJobs(); lps.removeCompatibility(JobType.CM_COV); // CM_COV allows only reducer instructions but this is MapOrReduce. TODO: piggybacking should be updated to take this extra constraint. lps.removeCompatibility(JobType.TRANSFORM); this.lps.setProperties(inputs, et, ExecLocation.MapOrReduce, breaksAlignment, aligner, definesMRJob); } else { lps.addCompatibility(JobType.INVALID); this.lps.setProperties(inputs, et, ExecLocation.ControlProgram, breaksAlignment, aligner, definesMRJob); } } /** * Constructor to perform a unary operation with 1 input. * * @param input1 * @param op */ public Unary(Lop input1, OperationTypes op, DataType dt, ValueType vt, ExecType et) { super(Lop.Type.UNARY, dt, vt); init(input1, op, dt, vt, et); } public Unary(Lop input1, OperationTypes op, DataType dt, ValueType vt) { super(Lop.Type.UNARY, dt, vt); init(input1, op, dt, vt, ExecType.MR); } private ExecType forceExecType(OperationTypes op, ExecType et) { if ( op == OperationTypes.INVERSE ) return ExecType.CP; return et; } private void init(Lop input1, OperationTypes op, DataType dt, ValueType vt, ExecType et) { operation = op; et = forceExecType(op, et); valInput = null; this.addInput(input1); input1.addOutput(this); boolean breaksAlignment = false; boolean aligner = false; boolean definesMRJob = false; if ( et == ExecType.MR ) { /* * This lop can be executed in all jobs except for PARTITION. MMCJ: only * in mapper. GroupedAgg: only in reducer. */ lps.addCompatibility(JobType.ANY); lps.removeNonPiggybackableJobs(); lps.removeCompatibility(JobType.CM_COV); // CM_COV allows only reducer instructions but this is MapOrReduce. TODO: piggybacking should be updated to take this extra constraint. lps.removeCompatibility(JobType.TRANSFORM); this.lps.setProperties(inputs, et, ExecLocation.MapOrReduce, breaksAlignment, aligner, definesMRJob); } else { lps.addCompatibility(JobType.INVALID); this.lps.setProperties(inputs, et, ExecLocation.ControlProgram, breaksAlignment, aligner, definesMRJob); } } @Override public String toString() { if (valInput != null) return "Operation: " + operation + " " + "Label: " + valInput.getOutputParameters().getLabel() + " input types " + this.getInputs().get(0).toString() + " " + this.getInputs().get(1).toString(); else return "Operation: " + operation + " " + "Label: N/A"; } private String getOpcode() throws LopsException { switch (operation) { case NOT: return "!"; case ABS: return "abs"; case SIN: return "sin"; case COS: return "cos"; case TAN: return "tan"; case ASIN: return "asin"; case ACOS: return "acos"; case ATAN: return "atan"; case SQRT: return "sqrt"; case EXP: return "exp"; case LOG: return "log"; case LOG_NZ: return "log_nz"; case ROUND: return "round"; case ADD: return "+"; case SUBTRACT: return "-"; case SUBTRACT_NZ: return "-nz"; case SUBTRACTRIGHT: return "s-r"; case MULTIPLY: return "*"; case MULTIPLY2: return "*2"; case MINUS1_MULTIPLY: return "1-*"; case DIVIDE: return "/"; case MODULUS: return "%%"; case INTDIV: return "%/%"; case Over: return "so"; case POW: return "^"; case POW2: return "^2"; case GREATER_THAN: return ">"; case GREATER_THAN_OR_EQUALS: return ">="; case LESS_THAN: return "<"; case LESS_THAN_OR_EQUALS: return "<="; case EQUALS: return "=="; case NOT_EQUALS: return "!="; case MAX: return "max"; case MIN: return "min"; case CEIL: return "ceil"; case FLOOR: return "floor"; case CUMSUM: return "ucumk+"; case CUMPROD: return "ucum*"; case CUMMIN: return "ucummin"; case CUMMAX: return "ucummax"; case INVERSE: return "inverse"; case MR_IQM: return "qpick"; case SPROP: return "sprop"; case SIGMOID: return "sigmoid"; case SELP: return "sel+"; default: throw new LopsException(this.printErrorLocation() + "Instruction not defined for Unary operation: " + operation); } } public String getInstructions(String input1, String output) throws LopsException { // Unary operators with one input if (this.getInputs().size() == 1) { StringBuilder sb = new StringBuilder(); sb.append( getExecType() ); sb.append( Lop.OPERAND_DELIMITOR ); sb.append( getOpcode() ); sb.append( OPERAND_DELIMITOR ); sb.append( getInputs().get(0).prepInputOperand(input1)); sb.append( OPERAND_DELIMITOR ); sb.append( this.prepOutputOperand(output)); return sb.toString(); } else { throw new LopsException(this.printErrorLocation() + "Invalid number of operands (" + this.getInputs().size() + ") for an Unary opration: " + operation); } } @Override public String getInstructions(int input_index, int output_index) throws LopsException { return getInstructions(""+input_index, ""+output_index); } @Override public String getInstructions(String input1, String input2, String output) throws LopsException { StringBuilder sb = new StringBuilder(); sb.append( getExecType() ); sb.append( Lop.OPERAND_DELIMITOR ); sb.append( getOpcode() ); sb.append( OPERAND_DELIMITOR ); if ( getInputs().get(0).getDataType() == DataType.SCALAR ) { sb.append( getInputs().get(0).prepScalarInputOperand(getExecType())); } else { sb.append( getInputs().get(0).prepInputOperand(input1)); } sb.append( OPERAND_DELIMITOR ); if ( getInputs().get(1).getDataType() == DataType.SCALAR ) { sb.append( getInputs().get(1).prepScalarInputOperand(getExecType())); } else { sb.append( getInputs().get(1).prepInputOperand(input2)); } sb.append( OPERAND_DELIMITOR ); sb.append( this.prepOutputOperand(output)); return sb.toString(); } @Override public String getInstructions(int inputIndex1, int inputIndex2, int outputIndex) throws LopsException { if (this.getInputs().size() == 2) { // Unary operators with two inputs // Determine the correct operation, depending on the scalar input Lop linput1 = getInputs().get(0); Lop linput2 = getInputs().get(1); int scalarIndex = -1, matrixIndex = -1; String matrixLabel= null; if( linput1.getDataType() == DataType.MATRIX ) { // inputIndex1 is matrix, and inputIndex2 is scalar scalarIndex = 1; matrixLabel = String.valueOf(inputIndex1); } else { // inputIndex2 is matrix, and inputIndex1 is scalar scalarIndex = 0; matrixLabel = String.valueOf(inputIndex2); // when the first operand is a scalar, setup the operation type accordingly if (operation == OperationTypes.SUBTRACT) operation = OperationTypes.SUBTRACTRIGHT; else if (operation == OperationTypes.DIVIDE) operation = OperationTypes.Over; } matrixIndex = 1-scalarIndex; // Prepare the instruction StringBuilder sb = new StringBuilder(); sb.append( getExecType() ); sb.append( Lop.OPERAND_DELIMITOR ); sb.append( getOpcode() ); sb.append( OPERAND_DELIMITOR ); if( operation == OperationTypes.INTDIV || operation == OperationTypes.MODULUS || operation == OperationTypes.POW || operation == OperationTypes.GREATER_THAN || operation == OperationTypes.GREATER_THAN_OR_EQUALS || operation == OperationTypes.LESS_THAN || operation == OperationTypes.LESS_THAN_OR_EQUALS || operation == OperationTypes.EQUALS || operation == OperationTypes.NOT_EQUALS ) { //TODO discuss w/ Shirish: we should consolidate the other operations (see ScalarInstruction.parseInstruction / BinaryCPInstruction.getScalarOperator) //append both operands sb.append( (linput1.getDataType()==DataType.MATRIX? linput1.prepInputOperand(String.valueOf(inputIndex1)) : linput1.prepScalarInputOperand(getExecType())) ); sb.append( OPERAND_DELIMITOR ); sb.append( (linput2.getDataType()==DataType.MATRIX? linput2.prepInputOperand(String.valueOf(inputIndex2)) : linput2.prepScalarInputOperand(getExecType())) ); sb.append( OPERAND_DELIMITOR ); } else { // append the matrix operand sb.append( getInputs().get(matrixIndex).prepInputOperand(matrixLabel)); sb.append( OPERAND_DELIMITOR ); // append the scalar operand sb.append( getInputs().get(scalarIndex).prepScalarInputOperand(getExecType())); sb.append( OPERAND_DELIMITOR ); } sb.append( this.prepOutputOperand(outputIndex+"")); return sb.toString(); } else { throw new LopsException(this.printErrorLocation() + "Invalid number of operands (" + this.getInputs().size() + ") for an Unary opration: " + operation); } } }