/** * (C) Copyright IBM Corp. 2010, 2015 * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *  */ package com.ibm.bi.dml.lops; import com.ibm.bi.dml.hops.AggBinaryOp.SparkAggType; import com.ibm.bi.dml.lops.LopProperties.ExecLocation; import com.ibm.bi.dml.lops.LopProperties.ExecType; import com.ibm.bi.dml.lops.compile.JobType; import com.ibm.bi.dml.parser.Expression.DataType; import com.ibm.bi.dml.parser.Expression.ValueType; public class MapMult extends Lop { public static final String OPCODE = "mapmm"; public enum CacheType { RIGHT, RIGHT_PART, LEFT, LEFT_PART; public boolean isRightCache(){ return (this == RIGHT || this == RIGHT_PART); } } private CacheType _cacheType = null; private boolean _outputEmptyBlocks = true; //optional attribute for spark exec type private SparkAggType _aggtype = SparkAggType.MULTI_BLOCK; /** * Constructor to setup a partial Matrix-Vector Multiplication for MR * * @param input * @param op * @return * @throws LopsException */ public MapMult(Lop input1, Lop input2, DataType dt, ValueType vt, boolean rightCache, boolean partitioned, boolean emptyBlocks ) throws LopsException { super(Lop.Type.MapMult, dt, vt); this.addInput(input1); this.addInput(input2); input1.addOutput(this); input2.addOutput(this); //setup mapmult parameters if( rightCache ) _cacheType = partitioned ? CacheType.RIGHT_PART : CacheType.RIGHT; else _cacheType = partitioned ? CacheType.LEFT_PART : CacheType.LEFT; _outputEmptyBlocks = emptyBlocks; //setup MR parameters boolean breaksAlignment = true; boolean aligner = false; boolean definesMRJob = false; lps.addCompatibility(JobType.GMR); lps.addCompatibility(JobType.DATAGEN); lps.setProperties( inputs, ExecType.MR, ExecLocation.Map, breaksAlignment, aligner, definesMRJob ); } /** * Constructor to setup a partial Matrix-Vector Multiplication for Spark * * @param input1 * @param input2 * @param dt * @param vt * @param rightCache * @param emptyBlocks * @param aggregate * @param et * @throws LopsException */ public MapMult(Lop input1, Lop input2, DataType dt, ValueType vt, boolean rightCache, boolean partitioned, boolean emptyBlocks, SparkAggType aggtype) throws LopsException { super(Lop.Type.MapMult, dt, vt); this.addInput(input1); this.addInput(input2); input1.addOutput(this); input2.addOutput(this); //setup mapmult parameters if( rightCache ) _cacheType = partitioned ? CacheType.RIGHT_PART : CacheType.RIGHT; else _cacheType = partitioned ? CacheType.LEFT_PART : CacheType.LEFT; _outputEmptyBlocks = emptyBlocks; _aggtype = aggtype; //setup MR parameters boolean breaksAlignment = false; boolean aligner = false; boolean definesMRJob = false; lps.addCompatibility(JobType.INVALID); lps.setProperties( inputs, ExecType.SPARK, ExecLocation.ControlProgram, breaksAlignment, aligner, definesMRJob ); } public String toString() { return "Operation = MapMM"; } @Override public String getInstructions(int input_index1, int input_index2, int output_index) { //MR instruction generation StringBuilder sb = new StringBuilder(); sb.append(getExecType()); sb.append(Lop.OPERAND_DELIMITOR); sb.append(OPCODE); sb.append(Lop.OPERAND_DELIMITOR); sb.append( getInputs().get(0).prepInputOperand(input_index1)); sb.append(Lop.OPERAND_DELIMITOR); sb.append( getInputs().get(1).prepInputOperand(input_index2)); sb.append(Lop.OPERAND_DELIMITOR); sb.append( this.prepOutputOperand(output_index)); sb.append(Lop.OPERAND_DELIMITOR); sb.append(_cacheType); sb.append(Lop.OPERAND_DELIMITOR); sb.append(_outputEmptyBlocks); return sb.toString(); } @Override public String getInstructions(String input1, String input2, String output) { //Spark instruction generation StringBuilder sb = new StringBuilder(); sb.append(getExecType()); sb.append(Lop.OPERAND_DELIMITOR); sb.append(OPCODE); sb.append(Lop.OPERAND_DELIMITOR); sb.append( getInputs().get(0).prepInputOperand(input1)); sb.append(Lop.OPERAND_DELIMITOR); sb.append( getInputs().get(1).prepInputOperand(input2)); sb.append(Lop.OPERAND_DELIMITOR); sb.append( this.prepOutputOperand(output)); sb.append(Lop.OPERAND_DELIMITOR); sb.append(_cacheType); sb.append(Lop.OPERAND_DELIMITOR); sb.append(_outputEmptyBlocks); sb.append(Lop.OPERAND_DELIMITOR); sb.append(_aggtype.toString()); return sb.toString(); } @Override public boolean usesDistributedCache() { return true; } @Override public int[] distributedCacheInputIndex() { switch( _cacheType ) { // first input is from distributed cache case LEFT: case LEFT_PART: return new int[]{1}; // second input is from distributed cache case RIGHT: case RIGHT_PART: return new int[]{2}; } return new int[]{-1}; //error } }