/** * (C) Copyright IBM Corp. 2010, 2015 * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *  */ package com.ibm.bi.dml.runtime.instructions.spark; import java.util.ArrayList; import java.util.Iterator; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.function.PairFlatMapFunction; import org.apache.spark.api.java.function.PairFunction; import scala.Tuple2; import com.ibm.bi.dml.hops.AggBinaryOp.SparkAggType; import com.ibm.bi.dml.lops.MapMult; import com.ibm.bi.dml.lops.MapMult.CacheType; import com.ibm.bi.dml.runtime.DMLRuntimeException; import com.ibm.bi.dml.runtime.DMLUnsupportedOperationException; import com.ibm.bi.dml.runtime.controlprogram.context.ExecutionContext; import com.ibm.bi.dml.runtime.controlprogram.context.SparkExecutionContext; import com.ibm.bi.dml.runtime.functionobjects.Multiply; import com.ibm.bi.dml.runtime.functionobjects.Plus; import com.ibm.bi.dml.runtime.instructions.InstructionUtils; import com.ibm.bi.dml.runtime.instructions.cp.CPOperand; import com.ibm.bi.dml.runtime.instructions.spark.data.LazyIterableIterator; import com.ibm.bi.dml.runtime.instructions.spark.data.PartitionedBroadcastMatrix; import com.ibm.bi.dml.runtime.instructions.spark.functions.FilterNonEmptyBlocksFunction; import com.ibm.bi.dml.runtime.instructions.spark.utils.RDDAggregateUtils; import com.ibm.bi.dml.runtime.matrix.MatrixCharacteristics; import com.ibm.bi.dml.runtime.matrix.data.MatrixBlock; import com.ibm.bi.dml.runtime.matrix.data.MatrixIndexes; import com.ibm.bi.dml.runtime.matrix.data.OperationsOnMatrixValues; import com.ibm.bi.dml.runtime.matrix.operators.AggregateBinaryOperator; import com.ibm.bi.dml.runtime.matrix.operators.AggregateOperator; import com.ibm.bi.dml.runtime.matrix.operators.Operator; /** * TODO: we need to reason about multiple broadcast variables for chains of mapmults (sum of operations until cleanup) * */ public class MapmmSPInstruction extends BinarySPInstruction { private CacheType _type = null; private boolean _outputEmpty = true; private SparkAggType _aggtype; public MapmmSPInstruction(Operator op, CPOperand in1, CPOperand in2, CPOperand out, CacheType type, boolean outputEmpty, SparkAggType aggtype, String opcode, String istr ) { super(op, in1, in2, out, opcode, istr); _sptype = SPINSTRUCTION_TYPE.MAPMM; _type = type; _outputEmpty = outputEmpty; _aggtype = aggtype; } /** * * @param str * @return * @throws DMLRuntimeException */ public static MapmmSPInstruction parseInstruction( String str ) throws DMLRuntimeException { String parts[] = InstructionUtils.getInstructionPartsWithValueType(str); String opcode = parts[0]; if ( opcode.equalsIgnoreCase(MapMult.OPCODE)) { CPOperand in1 = new CPOperand(parts[1]); CPOperand in2 = new CPOperand(parts[2]); CPOperand out = new CPOperand(parts[3]); CacheType type = CacheType.valueOf(parts[4]); boolean outputEmpty = Boolean.parseBoolean(parts[5]); SparkAggType aggtype = SparkAggType.valueOf(parts[6]); AggregateOperator agg = new AggregateOperator(0, Plus.getPlusFnObject()); AggregateBinaryOperator aggbin = new AggregateBinaryOperator(Multiply.getMultiplyFnObject(), agg); return new MapmmSPInstruction(aggbin, in1, in2, out, type, outputEmpty, aggtype, opcode, str); } else { throw new DMLRuntimeException("MapmmSPInstruction.parseInstruction():: Unknown opcode " + opcode); } } @Override public void processInstruction(ExecutionContext ec) throws DMLRuntimeException, DMLUnsupportedOperationException { SparkExecutionContext sec = (SparkExecutionContext)ec; String rddVar = (_type==CacheType.LEFT) ? input2.getName() : input1.getName(); String bcastVar = (_type==CacheType.LEFT) ? input1.getName() : input2.getName(); MatrixCharacteristics mcRdd = sec.getMatrixCharacteristics(rddVar); MatrixCharacteristics mcBc = sec.getMatrixCharacteristics(bcastVar); //get inputs JavaPairRDD<MatrixIndexes,MatrixBlock> in1 = sec.getBinaryBlockRDDHandleForVariable( rddVar ); PartitionedBroadcastMatrix in2 = sec.getBroadcastForVariable( bcastVar ); //empty input block filter if( !_outputEmpty ) in1 = in1.filter(new FilterNonEmptyBlocksFunction()); //execute mapmult instruction JavaPairRDD<MatrixIndexes,MatrixBlock> out = null; if( requiresFlatMapFunction(_type, mcBc) ) out = in1.flatMapToPair( new RDDFlatMapMMFunction(_type, in2) ); else if( preservesPartitioning(mcRdd, _type) ) out = in1.mapPartitionsToPair(new RDDMapMMPartitionFunction(_type, in2), true); else out = in1.mapToPair( new RDDMapMMFunction(_type, in2) ); //empty output block filter if( !_outputEmpty ) out = out.filter(new FilterNonEmptyBlocksFunction()); //perform aggregation if necessary and put output into symbol table if( _aggtype == SparkAggType.SINGLE_BLOCK ) { MatrixBlock out2 = RDDAggregateUtils.sumStable(out); //put output block into symbol table (no lineage because single block) //this also includes implicit maintenance of matrix characteristics sec.setMatrixOutput(output.getName(), out2); } else //MULTI_BLOCK or NONE { if( _aggtype == SparkAggType.MULTI_BLOCK ) out = RDDAggregateUtils.sumByKeyStable(out); //put output RDD handle into symbol table sec.setRDDHandleForVariable(output.getName(), out); sec.addLineageRDD(output.getName(), rddVar); sec.addLineageBroadcast(output.getName(), bcastVar); //update output statistics if not inferred updateBinaryMMOutputMatrixCharacteristics(sec, true); } } /** * * @param mcIn * @param type * @return */ private static boolean preservesPartitioning( MatrixCharacteristics mcIn, CacheType type ) { if( type == CacheType.LEFT ) return mcIn.dimsKnown() && mcIn.getRows() <= mcIn.getRowsPerBlock(); else // RIGHT return mcIn.dimsKnown() && mcIn.getCols() <= mcIn.getColsPerBlock(); } /** * * @param type * @param mcBc * @return */ private static boolean requiresFlatMapFunction( CacheType type, MatrixCharacteristics mcBc) { return (type == CacheType.LEFT && mcBc.getRows() > mcBc.getRowsPerBlock()) || (type == CacheType.RIGHT && mcBc.getCols() > mcBc.getColsPerBlock()); } /** * * */ private static class RDDMapMMFunction implements PairFunction<Tuple2<MatrixIndexes, MatrixBlock>, MatrixIndexes, MatrixBlock> { private static final long serialVersionUID = 8197406787010296291L; private CacheType _type = null; private AggregateBinaryOperator _op = null; private PartitionedBroadcastMatrix _pbc = null; public RDDMapMMFunction( CacheType type, PartitionedBroadcastMatrix binput ) { _type = type; _pbc = binput; //created operator for reuse AggregateOperator agg = new AggregateOperator(0, Plus.getPlusFnObject()); _op = new AggregateBinaryOperator(Multiply.getMultiplyFnObject(), agg); } @Override public Tuple2<MatrixIndexes, MatrixBlock> call( Tuple2<MatrixIndexes, MatrixBlock> arg0 ) throws Exception { MatrixIndexes ixIn = arg0._1(); MatrixBlock blkIn = arg0._2(); MatrixIndexes ixOut = new MatrixIndexes(); MatrixBlock blkOut = new MatrixBlock(); if( _type == CacheType.LEFT ) { //get the right hand side matrix MatrixBlock left = _pbc.getMatrixBlock(1, (int)ixIn.getRowIndex()); //execute matrix-vector mult OperationsOnMatrixValues.performAggregateBinary( new MatrixIndexes(1,ixIn.getRowIndex()), left, ixIn, blkIn, ixOut, blkOut, _op); } else //if( _type == CacheType.RIGHT ) { //get the right hand side matrix MatrixBlock right = _pbc.getMatrixBlock((int)ixIn.getColumnIndex(), 1); //execute matrix-vector mult OperationsOnMatrixValues.performAggregateBinary( ixIn, blkIn, new MatrixIndexes(ixIn.getColumnIndex(),1), right, ixOut, blkOut, _op); } //output new tuple return new Tuple2<MatrixIndexes, MatrixBlock>(ixOut, blkOut); } } /** * */ private static class RDDMapMMPartitionFunction implements PairFlatMapFunction<Iterator<Tuple2<MatrixIndexes, MatrixBlock>>, MatrixIndexes, MatrixBlock> { private static final long serialVersionUID = 1886318890063064287L; private CacheType _type = null; private AggregateBinaryOperator _op = null; private PartitionedBroadcastMatrix _pbc = null; public RDDMapMMPartitionFunction( CacheType type, PartitionedBroadcastMatrix binput ) { _type = type; _pbc = binput; //created operator for reuse AggregateOperator agg = new AggregateOperator(0, Plus.getPlusFnObject()); _op = new AggregateBinaryOperator(Multiply.getMultiplyFnObject(), agg); } @Override public Iterable<Tuple2<MatrixIndexes, MatrixBlock>> call(Iterator<Tuple2<MatrixIndexes, MatrixBlock>> arg0) throws Exception { return new MapMMPartitionIterator(arg0); } /** * Lazy mapmm iterator to prevent materialization of entire partition output in-memory. * The implementation via mapPartitions is required to preserve partitioning information, * which is important for performance. */ private class MapMMPartitionIterator extends LazyIterableIterator<Tuple2<MatrixIndexes, MatrixBlock>> { public MapMMPartitionIterator(Iterator<Tuple2<MatrixIndexes, MatrixBlock>> in) { super(in); } @Override protected Tuple2<MatrixIndexes, MatrixBlock> computeNext(Tuple2<MatrixIndexes, MatrixBlock> arg) throws Exception { MatrixIndexes ixIn = arg._1(); MatrixBlock blkIn = arg._2(); MatrixBlock blkOut = new MatrixBlock(); if( _type == CacheType.LEFT ) { //get the right hand side matrix MatrixBlock left = _pbc.getMatrixBlock(1, (int)ixIn.getRowIndex()); //execute index preserving matrix multiplication left.aggregateBinaryOperations(left, blkIn, blkOut, _op); } else //if( _type == CacheType.RIGHT ) { //get the right hand side matrix MatrixBlock right = _pbc.getMatrixBlock((int)ixIn.getColumnIndex(), 1); //execute index preserving matrix multiplication blkIn.aggregateBinaryOperations(blkIn, right, blkOut, _op); } return new Tuple2<MatrixIndexes,MatrixBlock>(ixIn, blkOut); } } } /** * * */ private static class RDDFlatMapMMFunction implements PairFlatMapFunction<Tuple2<MatrixIndexes, MatrixBlock>, MatrixIndexes, MatrixBlock> { private static final long serialVersionUID = -6076256569118957281L; private CacheType _type = null; private AggregateBinaryOperator _op = null; private PartitionedBroadcastMatrix _pbc = null; public RDDFlatMapMMFunction( CacheType type, PartitionedBroadcastMatrix binput ) { _type = type; _pbc = binput; //created operator for reuse AggregateOperator agg = new AggregateOperator(0, Plus.getPlusFnObject()); _op = new AggregateBinaryOperator(Multiply.getMultiplyFnObject(), agg); } @Override public Iterable<Tuple2<MatrixIndexes, MatrixBlock>> call( Tuple2<MatrixIndexes, MatrixBlock> arg0 ) throws Exception { ArrayList<Tuple2<MatrixIndexes, MatrixBlock>> ret = new ArrayList<Tuple2<MatrixIndexes, MatrixBlock>>(); MatrixIndexes ixIn = arg0._1(); MatrixBlock blkIn = arg0._2(); if( _type == CacheType.LEFT ) { //for all matching left-hand-side blocks int len = _pbc.getNumRowBlocks(); for( int i=1; i<=len; i++ ) { MatrixBlock left = _pbc.getMatrixBlock(i, (int)ixIn.getRowIndex()); MatrixIndexes ixOut = new MatrixIndexes(); MatrixBlock blkOut = new MatrixBlock(); //execute matrix-vector mult OperationsOnMatrixValues.performAggregateBinary( new MatrixIndexes(i,ixIn.getRowIndex()), left, ixIn, blkIn, ixOut, blkOut, _op); ret.add(new Tuple2<MatrixIndexes, MatrixBlock>(ixOut, blkOut)); } } else //if( _type == CacheType.RIGHT ) { //for all matching right-hand-side blocks int len = _pbc.getNumColumnBlocks(); for( int j=1; j<=len; j++ ) { //get the right hand side matrix MatrixBlock right = _pbc.getMatrixBlock((int)ixIn.getColumnIndex(), j); MatrixIndexes ixOut = new MatrixIndexes(); MatrixBlock blkOut = new MatrixBlock(); //execute matrix-vector mult OperationsOnMatrixValues.performAggregateBinary( ixIn, blkIn, new MatrixIndexes(ixIn.getColumnIndex(),j), right, ixOut, blkOut, _op); ret.add(new Tuple2<MatrixIndexes, MatrixBlock>(ixOut, blkOut)); } } return ret; } } }