/* This file is part of jpcsp. Jpcsp is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Jpcsp is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Jpcsp. If not, see <http://www.gnu.org/licenses/>. */ package jpcsp.media.codec.aac; import static jpcsp.media.codec.aac.PSContext.PS_AP_LINKS; public class PSDSP { private static void stereoInterpolate(float l[][], int lOffset, float r[][], int rOffset, float h[][], float h_step[][], int len) { float h0 = h[0][0]; float h1 = h[0][1]; float h2 = h[0][2]; float h3 = h[0][3]; float hs0 = h_step[0][0]; float hs1 = h_step[0][1]; float hs2 = h_step[0][2]; float hs3 = h_step[0][3]; int n; for (n = 0; n < len; n++) { //l is s, r is d float l_re = l[lOffset + n][0]; float l_im = l[lOffset + n][1]; float r_re = r[rOffset + n][0]; float r_im = r[rOffset + n][1]; h0 += hs0; h1 += hs1; h2 += hs2; h3 += hs3; l[lOffset + n][0] = h0 * l_re + h2 * r_re; l[lOffset + n][1] = h0 * l_im + h2 * r_im; r[rOffset + n][0] = h1 * l_re + h3 * r_re; r[rOffset + n][1] = h1 * l_im + h3 * r_im; } } private static void stereoInterpolateIpdopd(float l[][], int lOffset, float r[][], int rOffset, float h[][], float h_step[][], int len) { float h00 = h[0][0], h10 = h[1][0]; float h01 = h[0][1], h11 = h[1][1]; float h02 = h[0][2], h12 = h[1][2]; float h03 = h[0][3], h13 = h[1][3]; float hs00 = h_step[0][0], hs10 = h_step[1][0]; float hs01 = h_step[0][1], hs11 = h_step[1][1]; float hs02 = h_step[0][2], hs12 = h_step[1][2]; float hs03 = h_step[0][3], hs13 = h_step[1][3]; int n; for (n = 0; n < len; n++) { //l is s, r is d float l_re = l[lOffset + n][0]; float l_im = l[lOffset + n][1]; float r_re = r[rOffset + n][0]; float r_im = r[rOffset + n][1]; h00 += hs00; h01 += hs01; h02 += hs02; h03 += hs03; h10 += hs10; h11 += hs11; h12 += hs12; h13 += hs13; l[lOffset + n][0] = h00 * l_re + h02 * r_re - h10 * l_im - h12 * r_im; l[lOffset + n][1] = h00 * l_im + h02 * r_im + h10 * l_re + h12 * r_re; r[rOffset + n][0] = h01 * l_re + h03 * r_re - h11 * l_im - h13 * r_im; r[rOffset + n][1] = h01 * l_im + h03 * r_im + h11 * l_re + h13 * r_re; } } public static void stereoInterpolate(float l[][], int lOffset, float r[][], int rOffset, float h[][], float h_step[][], int len, boolean ipdopd) { if (ipdopd) { stereoInterpolateIpdopd(l, lOffset, r, rOffset, h, h_step, len); } else { stereoInterpolate(l, lOffset, r, rOffset, h, h_step, len); } } public static void add_squares(float dst[], int dstOffset, final float src[][], int srcOffset, int n) { for (int i = 0; i < n; i++) { dst[dstOffset + i] += src[srcOffset + i][0] * src[srcOffset + i][0] + src[srcOffset + i][1] * src[srcOffset + i][1]; } } public static void mul_pair_single(float dst[][], int dstOffset, float src0[][], int src0Offset, float src1[], int src1Offset, int n) { for (int i = 0; i < n; i++) { dst[dstOffset + i][0] = src0[src0Offset + i][0] * src1[src1Offset + i]; dst[dstOffset + i][1] = src0[src0Offset + i][1] * src1[src1Offset + i]; } } public static void hybrid_analysis(float out[][], int outOffset, float in[][], int inOffset, float filter[][][], int filterOffset, int stride, int n) { for (int i = 0; i < n; i++) { float sum_re = filter[filterOffset + i][6][0] * in[inOffset + 6][0]; float sum_im = filter[filterOffset + i][6][0] * in[inOffset + 6][1]; for (int j = 0; j < 6; j++) { float in0_re = in[inOffset + j][0]; float in0_im = in[inOffset + j][1]; float in1_re = in[inOffset + 12-j][0]; float in1_im = in[inOffset + 12-j][1]; sum_re += filter[filterOffset + i][j][0] * (in0_re + in1_re) - filter[filterOffset + i][j][1] * (in0_im - in1_im); sum_im += filter[filterOffset + i][j][0] * (in0_im + in1_im) + filter[filterOffset + i][j][1] * (in0_re - in1_re); } out[outOffset + i * stride][0] = sum_re; out[outOffset + i * stride][1] = sum_im; } } public static void hybrid_analysis_ileave(float out[][][], int outOffset, float L[][][], int Loffset, int i, int len) { for (; i < 64; i++) { for (int j = 0; j < len; j++) { out[outOffset + i][j][0] = L[Loffset + 0][j][i]; out[outOffset + i][j][1] = L[Loffset + 1][j][i]; } } } public static void hybrid_synthesis_deint(float out[][][], float in[][][], int inOffset, int i, int len) { for (; i < 64; i++) { for (int n = 0; n < len; n++) { out[0][n][i] = in[inOffset + i][n][0]; out[1][n][i] = in[inOffset + i][n][1]; } } } private static final float a[] = { 0.65143905753106f, 0.56471812200776f, 0.48954165955695f }; public static void decorrelate(float out[][], int outOffset, float delay[][], int delayOffset, float ap_delay[][][], float phi_fract[], float Q_fract[][], float transient_gain[], float g_decay_slope, int len) { float ag[] = new float[PS_AP_LINKS]; for (int m = 0; m < PS_AP_LINKS; m++) { ag[m] = a[m] * g_decay_slope; } for (int n = 0; n < len; n++) { float in_re = delay[delayOffset + n][0] * phi_fract[0] - delay[delayOffset + n][1] * phi_fract[1]; float in_im = delay[delayOffset + n][0] * phi_fract[1] + delay[delayOffset + n][1] * phi_fract[0]; for (int m = 0; m < PS_AP_LINKS; m++) { float a_re = ag[m] * in_re; float a_im = ag[m] * in_im; float link_delay_re = ap_delay[m][n+2-m][0]; float link_delay_im = ap_delay[m][n+2-m][1]; float fractional_delay_re = Q_fract[m][0]; float fractional_delay_im = Q_fract[m][1]; float apd_re = in_re; float apd_im = in_im; in_re = link_delay_re * fractional_delay_re - link_delay_im * fractional_delay_im - a_re; in_im = link_delay_re * fractional_delay_im + link_delay_im * fractional_delay_re - a_im; ap_delay[m][n+5][0] = apd_re + ag[m] * in_re; ap_delay[m][n+5][1] = apd_im + ag[m] * in_im; } out[outOffset + n][0] = transient_gain[n] * in_re; out[outOffset + n][1] = transient_gain[n] * in_im; } } }